Ингибирующее действие DL-бутионинсульфоксимина на активность Р-гликопротеина in vitro

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Актуальность. Р-гликопротеин (Pgp) — белок множественной лекарственной устойчивости 1, обладающий широкой субстратной специфичностью. Его функционирование может изменяться под влиянием различных веществ, поэтому поиск эндогенных и экзогенных соединений, модулирующих активность белка-транспортёра, — актуальное направление исследований.

Цель. Оценить влияние DL-бутионинсульфоксимина на активность и количество белка-транспортёра Pgp в клетках линии Сасо-2.Материалы и методы исследования. Исследование выполнено на линии клеток аденокарциномы ободочной кишки человека (Caco-2). Клетки инкубировали с DL-бутионинсульфоксимином и хинидином (классический ингибитор Pgp) в концентрациях 1, 5, 10, 50, 100 и 500 мкМ в течение 3 ч. Количество Pgp оценивали методом вестерн-блот с денситометрическим анализом (Bio-Rad, США). Активность Pgp рассчитывали по транспорту его субстрата — фексофенадина, концентрацию которого определяли методом высокоэффективной жидкостной хроматографии с ультрафиолетовым детектированием (Стайер, Россия). Полученные результаты анализировали с помощью StatSoft Statistica 13.0 (ANOVA), расчёт IC50 проводили с использованием программы GraphPad Prism 8. Статистически значимыми считали различия при p <0,05.

Результаты. Инкубация с DL-бутионинсульфоксимином и хинидином в концентрациях 1–500 мкМ в течение 3 ч не влияла на количество Pgp в клетках линии Сасо-2. Активность Pgp снижалась при использовании DL-бутионинсульфоксимина в концентрациях 50–500 мкМ максимально на 47,7% (р=0,040). Хинидин в концентрациях 5–500 мкМ уменьшал активность Pgp максимально на 79,1% (р=0,0002) при концентрации 500 мкМ. Хинидин ингибировал активность Pgp в более низких концентрациях по сравнению с DL-бутионинсульфоксимином: IC50 фексофенадина при использовании хинидина составила 5,16±0,59 мкмоль/л, для DL-бутионинсульфоксимина — 17,21±2,46 мкмоль/л (р=0,001).

Вывод. DL-бутионинсульфоксимин оказывает прямой ингибирующий эффект на активность белка-транспортёра Pgp на клеточной линии Сасо-2.

Об авторах

Юлия Владимировна Абаленихина

Рязанский государственный медицинский университет им. И.П. Павлова

Автор, ответственный за переписку.
Email: abalenihina88@mail.ru
ORCID iD: 0000-0003-0427-0967

канд. биол. наук, доц., каф. биологической химии с курсом КЛД ФДПО

Россия, г. Рязань, Россия

Павел Юрьевич Мыльников

Рязанский государственный медицинский университет им. И.П. Павлова

Email: pavelmylnikov@mail.ru
ORCID iD: 0000-0001-7829-2494
SPIN-код: 8503-3082

аспирант, каф. фармакологии с курсом фармации ФДПО

Россия, г. Рязань, Россия

Алексей Владимирович Щулькин

Рязанский государственный медицинский университет им. И.П. Павлова

Email: alekseyshulkin@rambler.ru
ORCID iD: 0000-0003-1688-0017
SPIN-код: 2754-1702

докт. мед. наук, проф., каф. фармакологии с курсом фармации ФДПО

Россия, г. Рязань, Россия

Елена Николаевна Якушева

Рязанский государственный медицинский университет им. И.П. Павлова

Email: enya.rzn@yandex.ru
ORCID iD: 0000-0001-6887-4888
SPIN-код: 2865-3080

докт. мед. наук, проф., зав. каф., каф. фармакологии с курсом фармации ФДПО

Россия, г. Рязань, Россия

Список литературы

  1. Brueck S, Bruckmueller H, Wegner D, Busch D, Martin P, Oswald S, Cascorbi I, Siegmund W. Transcriptional and post-transcriptional regulation of duodenal P-glycoprotein and MRP2 in healthy human subjects after chronic treatment with rifampin and carbamazepine. Mol Pharm. 2019;16(9):3823–3830. doi: 10.1021/acs.molpharmaceut.9b00458.
  2. Mollazadeh S, Sahebkar A, Hadizadeh F, Behravan J, Arabzadeh S. Structural and functional aspects of P-glycoprotein and its inhibitors. Life Sci. 2018;214:118–123. doi: 10.1016/j.lfs.2018.10.048.
  3. Saravanakumar A, Sadighi A, Ryu R, Akhlaghi F. Physicochemical properties, biotransformation, and transport pathways of established and newly approved medications: A systematic review of the top 200 most prescribed drugs vs. the FDA-Approved drugs between 2005 and 2016. Clin Pharmacokinet. 2019;58(10):1281–1294. doi: 10.1007/s40262-019-00750-8.
  4. Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer: The early years of P-glycoprotein research. FEBS Lett. 2006;580(4):998–1009. doi: 10.1016/j.febslet.2005.12.060.
  5. Yano K, Tomono T, Ogihara T. Advances in studies of P-Glycoprotein and its expression regulators. Biol Pharm Bull. 2018;41(1):11–19. doi: 10.1248/bpb.b17-00725.
  6. Pendyala L, Perez R, Weinstein A, Zdanowicz J, Creaven PJ. Effect of glutathione depletion on the cytotoxicity of cisplatin and iproplatin in a human melanoma cell line. Cancer Chemother Pharmacol. 1997;40(1):38–44. doi: 10.1007/s002800050622.
  7. Wartenberg M, Ling FC, Schallenberg M, Bäumer AT, Petrat K, Hescheler J, Sauer H. Down-regulation of intrinsic P-glycoprotein expression in multicellular prostate tumor spheroids by reactive oxygen species. J Biol Chem. 2001;276(20):17420–17428. doi: 10.1074/jbc.M100141200.
  8. Hong H, Lu Y, Ji Z, Liu G. Up-regulation of P-glycoprotein expression by glutathione depletion-induced oxidative stress in rat brain microvessel endothelial cells. J Neurochem. 2006;98:1465–1473. doi: 10.1111/j.1471-4159.2006.03993.x.
  9. Vanhoefer U, Cao S, Minderman H, Toth K, Skenderis BS, Slovak ML, Rustum YM. DL-buthionine-(S,R)-sulfoximine potentiates in vivo the therapeutic efficacy of doxorubicin against multidrug resistance protein-expressing tumors. Clin Cancer Res. 1996;2(12):1961–1968.
  10. Gong MQ, Wu C, He XY, Zong JY, Wu JL, Zhuo RX, Cheng SX. Tumor targeting synergistic drug delivery by self-assembled hybrid nanovesicles to overcome drug resistance. Pharm Res. 2017;34(1):148–160. doi: 10.1007/s11095-016-2051-9.
  11. Kisara S, Furusawa S, Takayanagi Y, Sasaki K. Effect of glutathione depletion by buthionine sulfoximine on doxorubicin toxicity in mice. Res Commun Mol Pathol Pharmacol. 1995;89(3):401–410.
  12. Petri N, Tannergren C, Rungstad D, Lennernäs H. Transport characteristics of Fexofenadine in the Caco-2 cell model. Pharmac Res. 2004;21(8):1398–1404. doi: 10.1023/B:PHAM.0000036913.90332.b1.
  13. Elsby R, Surry DD, Smith VN, Gray AJ. Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions. Xenobiotic. 2008;38:1140–1164. doi: 10.1080/00498250802050880.
  14. Ерохина П.Д., Абаленихина Ю.В., Щулькин А.В., Черных И.В., Попова Н.М., Слепнев А.А., Якушева Е.Н. Изучение влияния прогестерона на активность гликопротеина-Р in vitro. Российский медико-биологический вестник имени академика И.П. Павлова. 2020;28(2):135–142. doi: 10.23888/PAVLOVJ2020282135-142.
  15. Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI. Oxidative stress mitigation by antioxidants — An overview on their chemistry and influences on health status. Eur J Med Chem. 2021;209:112891. doi: 10.1016/j.ejmech.2020.112891.
  16. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 5th ed. Oxford: Oxford University Press; 2015. 896 p. doi: 10.1093/acprof:oso/9780198717478.001.0001.
  17. Ziemann C, Bürkle A, Kahl GF, Hirsch-Ernst KI. Reactive oxygen species participate in mdr1b mRNA and P-glycoprotein overexpression in primary rat hepatocyte cultures. Carcinogenesis. 1999;20(3):407–414. doi: 10.1093/carcin/20.3.407.
  18. Felix RA, Barrand MA. P-glycoprotein expression in rat brain endothelial cells: evidence for regulation by transient oxidative stress. J Neurochem. 2002;80(1):64–72. doi: 10.1046/j.0022-3042.2001.00660.x.
  19. Shchulkin AV, Abalenikhina YV, Erokhina PD, Chernykh IV, Yakusheva EN. The role of P-glycoprotein in decreasing cell membranes permeability during oxidative stress. Biochemistry (Moscow). 2021;86(2):197–206. doi: 10.1134/S0006297921020085.
  20. Shchulkin AV, Abalenikhina YuV, Seidkulieva AA, Chernykh IV, Yakusheva EN. The effect of oxidative stress on the transport of the P-glycoprotein substrate through the cell monolayer. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology. 2021;15(3):257–269. doi: 10.1134/S1990747821040103.
  21. Poongavanam V, Haider N, Ecker GF. Fingerprint-based in silico models for the prediction of P-glycoprotein substrates and inhibitors. Bioorg Med Chem. 2012;20(18):5388–5395. doi: 10.1016/j.bmc.2012.03.045.
  22. Lee M, Jo A, Lee S, Kim JB, Chang Y, Nam JY, Cho H, Cho YY, Cho EJ, Lee JH, Yu SJ, Yoon JH, Kim YJ. 3-Bromopyruvate and buthionine sulfoximine effectively kill anoikis-resistant hepatocellular carcinoma cells. PLoS One. 2017;12(3):e0174271. doi: 10.1371/journal.pone.0174271.
  23. Du M, Zhang L, Scorsone KA, Woodfield SE, Zage PE. Nifurtimox is effective against neural tumor cells and is synergistic with Buthionine Sulfoximine. Sci Rep. 2016;6:27458. doi: 10.1038/srep27458.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Структура трансвелл-системы

Скачать (17KB)
3. Рис. 2. Относительное количество Р-гликопротеина (Pgp) в клетках линии Сасо-2 при воздействии DL-бутионинсульфоксимина (БСО) и хинидина в концентрациях 1–500 мкМ в течение 3 ч; К — контроль; GAPDH — глицеральдегид-3-фосфатдегидрогеназа

Скачать (60KB)
4. Рис. 3. Изменение коэффициента кажущейся проницаемости b-a (Papp b-a, а) и отношения коэффициентов кажущейся проницаемости (Рарр b-a/Рарр a-b, б) фексофенадина под действием DL-бутионинсульфоксимина (БСО) и хинидина в концентрациях 1–500 мкМ; IC50 — концентрация полумаксимального ингибирования. Расчёт IC50 и построение графиков выполнены с использованием программы GraphPad Prism 8

Скачать (41KB)

© 2022 Эко-Вектор



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».