Подходы к нефармакологической модуляции нервной и иммунной коммуникации: терапевтический потенциал вибрационной стимуляции

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В настоящее время наряду с традиционной физической нагрузкой в целях клинической реабилитации или для достижения спортивных показателей применяются принципы активации нейромышечной системы с использованием рефлекторной интенсивной стимуляции, опосредованной вибрационным воздействием. В ряде исследований вибрационная физическая нагрузка как немедикаментозный метод воздействия на различные функциональные системы организма продемонстрировала свою эффективность в реабилитации двигательных расстройств и мышечной слабости, в коррекции гормональных и метаболических нарушений, остеопороза, кардиореспираторной и возраст-ассоциированной патологии. Иммунная дисфункция и возрастные изменения тесно коррелируют с процессами нейровоспаления и нейродегенерации. Последние данные указывают на положительное влияние вибрационного тренинга на иммунный ответ и высшие интегративные функции мозга, а также демонстрируют терапевтические возможности при заболеваниях нервной системы. В настоящей статье анализируется влияние вибрационной стимуляции нейромышечной системы на клеточные и молекулярные пути, вовлечённые в нейроиммунные коммуникации, и систематизированы имеющиеся данные о потенциале такого воздействия для немедикаментозной коррекции неврологических и иммунных нарушений. Анализ исходов различных программ вибрационной физической нагрузки подтверждает эффективность и многофункциональность данного вмешательства для коррекции соответствующего дефицита и позволяет рассматривать его как многообещающее дополнение к традиционным упражнениям и методам физической реабилитации. Однако вопросы о конкретных механизмах, посредством которых интенсивная проприоцептивная стимуляция в условиях вибрационного тренинга может влиять на различные аспекты функционирования нервной системы и иммунный ответ, остаются открытыми. Поэтому изучение данной технологии с помощью разнообразных модельных организмов и у человека, а также комплексное исследование результатов воздействия и всесторонняя оценка терапевтической эффективности будут способствовать более глубокому и системному пониманию особенностей её влияния на здоровье человека в целом.

Об авторах

Игорь Викторович Широлапов

Самарский государственный медицинский университет

Автор, ответственный за переписку.
Email: ishirolapov@mail.ru
ORCID iD: 0000-0002-7670-6566
SPIN-код: 3939-3590
Scopus Author ID: 35776847200

кандидат медицинских наук, доцент, заведующий, лаб. Трансляционных исследований и персонализированной медицины НИИ нейронаук, доцент, каф. физиологии

Россия, 443079, Самара, ул. Гагарина, д. 18

Ольга Николаевна Павлова

Самарский государственный медицинский университет

Email: o.n.pavlova@samsmu.ru
ORCID iD: 0000-0002-8055-1958
SPIN-код: 6326-6884

доктор биологических наук, доцент, заведующий, каф. физиологии

Россия, Самара

Ольга Николаевна Гуленко

Самарский государственный медицинский университет

Email: o.n.gulenko@samsmu.ru
ORCID iD: 0000-0001-6338-7095
SPIN-код: 6795-5163

кандидат биологических наук, доцент, каф. физиологии

Россия, 443079, Самара, ул. Гагарина, д. 18

Полина Михайловна Москвитина

Самарский государственный медицинский университет

Email: p.m.moskvitina@samsmu.ru
ORCID iD: 0000-0002-0666-7442
SPIN-код: 5788-5795

ассистент, каф. физиологии

Россия, 443079, Самара, ул. Гагарина, д. 18

Список литературы

  1. Rittweger J. Manual of vibration exercise and vibration therapy. NYC, USA: Springer; 2020. 389 p. doi: 10.1007/978-3-030-43985-9
  2. Pyatin VF, Shirolapov IV. Physical load acceleration — expansion of rehabilitation possibilities of restorative medicine. Bulletin of restorative medicine. 2009;29(1):25–29. EDN: MUJGPR
  3. Rittweger J. Vibration as an exercise modality: how it may work, and what its potential might be. Eur J Appl Physiol. 2010;108(5):877–904. doi: 10.1007/s00421-009-1303-3 EDN: MYMPPL
  4. Johnson PK, Feland JB, Johnson AW, et al. Effect of whole body vibration on skin blood flow and nitric oxide production. J Diabetes Sci Technol. 2014;8:889–894. doi: 10.1177/1932296814536289
  5. Korolev VV, Pyatin VF, Eskov VM, Shirolapov IV. Features of restoration of heart rate variability after vibration physical load. Bulletin of restorative medicine. 2010;35(1):13–16. EDN: MUJHUL
  6. Zuccarelli L, Baldassarre G, Winnard A, et al. Effects of whole-body vibration or resistive-vibration exercise on blood clotting and related biomarkers: a systematic review. NPJ Microgravity. 2023;9(1):87. doi: 10.1038/s41526-023-00338-4 EDN: NTSZDD
  7. Kotelnikov GP, Piatin VF, Bulgakova SV, Shirolapov IV. Whole body vibration (acceleration) training increases bone mineral density and serum levels of osteocalcin in elderly women. Adv Gerontol. 2010;23(2):257–262. EDN: MSVIMD
  8. Liu P, Li Y, Xiao Y, et al. Effects of whole-body vibration training with different frequencies on the balance ability of the older adults: a network meta-analysis. Front Physiol. 2023;14:1153163. doi: 10.3389/fphys.2023.1153163 EDN: KIKMVS
  9. Pyatin VF, Shirolapov IV. Neuromuscular stimulation in conditions of vibrational physical activity for the prevention of osteoporosis. Problems of Balneology, Physiotherapy and Exercise Therapy. 2020;97(3):87–93. doi: 10.17116/kurort20209703187 EDN: FICCWK
  10. Yin S, Liu Y, Zhong Y, Zhu F. Effects of whole-body vibration on bone mineral density in postmenopausal women: an overview of systematic reviews. BMC Womens Health. 2024;24(1):444. doi: 10.1186/s12905-024-03290-x EDN: EQRREC
  11. Krause A, Lee K, König D, et al. Six weeks of whole-body vibration improves fine motor accuracy, functional mobility and quality of life in people with multiple sclerosis. PLoS One. 2022;17(7):e0270698. doi: 10.1371/journal.pone.0270698 EDN: XOFRGV
  12. Marín-Cascales E, Alcaraz PE, Ramos-Campo DJ, et al. Whole-body vibration training and bone health in postmenopausal women: a systematic review and meta-analysis. Medicine. 2018;97(34):e11918. doi: 10.1097/MD.0000000000011918
  13. Rogan S, Taeymans J. Effects of stochastic resonance whole-body vibration on sensorimotor function in elderly individuals — a systematic review. Front Sports Act Living. 2023;5:1083617. doi: 10.3389/fspor.2023.1083617 EDN: AEDNXW
  14. Oroszi T, van Heuvelen MJG, Nyakas C, van der Zee EA. Vibration detection: its function and recent advances in medical applications. F1000Res. 2020;9:F1000 Faculty Rev-619. doi: 10.12688/f1000research.22649.1 EDN: FYECFB
  15. Pyatin VF, Shirolapov IV. Acute whole body vibration significantly increases maximal expiratory flow in man. Herald of Tver State University. Series: Biology and Ecology. 2009;(11):38–43. EDN: MTZOHH
  16. Watson A, Wilkinson TMA, Freeman A. Evidence around the impact of pulmonary rehabilitation and exercise on redox status in COPD: a systematic review. Front Sports Act Living. 2021;3:782590. doi: 10.3389/fspor.2021.782590 EDN: FRRUJO
  17. Simon AB, Bajaj P, Samson J, Harris RA. the clinical utility of whole body vibration: a review of the different types and dosing for application in metabolic diseases. J Clin Med. 2024;13(17):5249. doi: 10.3390/jcm13175249 EDN: GNLTBS
  18. Bonanni R, Cariati I, Romagnoli C, et al. Whole body vibration: a valid alternative strategy to exercise? J Funct Morphol Kinesiol. 2022;7(4):99. doi: 10.3390/jfmk7040099 EDN: KKYKVA
  19. Hu J, Wang Y, Ji X, et al. Non-pharmacological strategies for managing sarcopenia in chronic diseases. Clin Interv Aging. 2024;19:827–841. doi: 10.2147/CIA.S455736 EDN: IWWPXY
  20. Krajnak K, Riley DA, Wu J, et al. Frequency-dependent effects of vibration on physiological systems: experiments with animals and other human surrogates. Ind Health. 2012;50:343. doi: 10.2486/INDHEALTH.MS1378
  21. Cardinale M, Rittweger J. Vibration exercise makes your muscles and bones stronger: fact or fiction? J Br Menopause Soc. 2006;12(1):12–18. doi: 10.1258/136218006775997261 EDN: MDVQED
  22. Eskov VM, Korolev VV, Polukhin VV, et al. Dynamics of parameters of attractors of motion of state vectors of the organism of elderly women under the influence of twelve-week vibration physical load. Bulletin of new medical technologies. 2009;16(3):66–69. EDN: LAMYMZ
  23. Monteiro-Oliveira BB, Coelho-Oliveira AC, Paineiras-Domingos LL, et al. Use of surface electromyography to evaluate effects of whole-body vibration exercises on neuromuscular activation and muscle strength in the elderly: a systematic review. Disabil Rehabil. 2022;44(24):7368–7377. doi: 10.1080/09638288.2021.1994030 EDN: PMIYUN
  24. Rittweger J, Ehrig J, Just K, et al. Oxygen uptake in whole-body vibration exercise: influence of vibration frequency, amplitude, and external load. Int J Sports Med. 2002;23(6):428–432. doi: 10.1055/s-2002-33739
  25. Cochrane DJ, Stannard SR, Firth EC, Rittweger J. Acute whole-body vibration elicits post-activation potentiation. Eur J Appl Physiol. 2010;108(2):311–319. doi: 10.1007/s00421-009-1215-2 EDN: VXJOHH
  26. Sanni AA, Blanks AM, Derella CC, et al. The effects of whole-body vibration amplitude on glucose metabolism, inflammation, and skeletal muscle oxygenation. Physiol Rep. 2022;10:e15208. doi: 10.14814/phy2.15208 EDN: JVGENR
  27. Di Giminiani R, Rucci N, Capuano L, et al. Individualized whole-body vibration: neuromuscular, biochemical, muscle damage and inflammatory acute responses. Dose Response. 2020;18:1559325820931262. doi: 10.1177/1559325820931262 EDN: TCLZKB
  28. Cochrane DJ, Loram ID, Stannard SR, Rittweger J. Changes in joint angle, muscle-tendon complex length, muscle contractile tissue displacement, and modulation of EMG activity during acute whole-body vibration. Muscle Nerve. 2009;40(3):420–429. doi: 10.1002/mus.21330
  29. Piatin VF, Shirolapov IV, Nikitin OL. Vibrational physical exercises as the rehabilitation in gerontology. Adv Gerontol. 2009;22(2):337–342. EDN: MUZWIR
  30. Li KY, Cho YJ, Chen RS. The effect of whole-body vibration on proprioception and motor function for individuals with moderate parkinson disease: a single-blind randomized controlled trial. Occup Ther Int. 2021;2021:9441366. doi: 10.1155/2021/9441366 EDN: QZHVEQ
  31. Rauch F. Vibration therapy. Dev Med Child Neurol. 2009;51 Suppl 4:166–168. doi: 10.1111/j.1469-8749.2009.03418.x
  32. Topaloğlu M, Ketenci A, Baslo B, Şahinkaya T. The effect of adding whole-body vibration exercises to home exercise program on muscle strength in patients with post-polio syndrome. Turk J Phys Med Rehabil. 2022;68(1):117–125. doi: 10.5606/tftrd.2022.7063 EDN: KSITOG
  33. Shirolapov IV, Pyatin VF, Zhestkov AV, et al. Levels of proinflammatory cytokines TNFα and IL-8 under conditions of long-term proprioceptive stimulation. Medical Immunology. 2015;17(S):451. EDN: UQDESD
  34. Cochrane DJ, Sartor F, Winwood K, et al. A comparison of the physiologic effects of acute whole-body vibration exercise in young and older people. Arch Phys Med Rehabil. 2008;89(5):815–821. doi: 10.1016/j.apmr.2007.09.055
  35. Pyatin VF, Shirolapov IV, Khamzina GR, et al. Hemodynamic effects of proprioceptive stimulation in elderly people. Modern problems of science and education. 2015;(2–1):88. EDN: UHWXYN
  36. Figueroa A, Jaime SJ, Alvarez-Alvarado S. Whole-body vibration as a potential countermeasure for dynapenia and arterial stiffness. Integr Med Res. 2016;5(3):204–211. doi: 10.1016/j.imr.2016.06.004
  37. Inês Gonzáles A, Lavarda do Nascimento G, da Silva A, et al. Whole-body vibration exercise in the management of cardiovascular diseases: A systematic review. J Body Mov Ther. 2023;36:20–29. doi: 10.1016/j.jbmt.2023.04.057 EDN: SWONAF
  38. Pyatin VF, Shirolapov IV, Zhestkov AV, Veretelnik EN. Increase in expiratory air flow rate in elderly women with a single vibration physical load. Herald of Tver State University. Series: Biology and Ecology. 2009;(13):38–43. EDN: MTZOPJ
  39. Šarabon N, Kozinc Ž, Löfler S, Hofer C. resistance exercise, electrical muscle stimulation, and whole-body vibration in older adults: systematic review and meta-analysis of randomized controlled trials. J Clin Med. 2020;9(9):2902. doi: 10.3390/jcm9092902 EDN: UKEXEZ
  40. Toader C, Tataru CP, Munteanu O, et al. Revolutionizing neuroimmunology: unraveling immune dynamics and therapeutic innovations in CNS disorders. Int J Mol Sci. 2024;25(24):13614. doi: 10.3390/ijms252413614 EDN: HCTSAD
  41. Lavrov OV, Pyatin VF, Shirolapov IV. Stress-induced features of immunological parameters in people with differentiated vegetative-hormonal clusters. Medical Immunology. 2013;15(3):283–288. EDN: QCRQCL
  42. Rankin LC, Artis D. Beyond host defense: emerging functions of the immune system in regulating complex tissue physiology. Cell. 2018;173:554–567. doi: 10.1016/J.CELL.2018.03.013 EDN: VFHPVU
  43. Wallrapp A, Chiu IM. Neuroimmune Interactions in the Intestine. Annu Rev Immunol. 2024;42(1):489–519. doi: 10.1146/annurev-immunol-101921-042929 EDN: OUEYVE
  44. Shirolapov IV, Zakharov AV, Smirnova DA, et al. The significance of the glymphatic pathway in the relationship between the sleep-wake cycle and neurodegenerative diseases. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(9):31–36. doi: 10.17116/jnevro202312309131 EDN: IWJTUP
  45. Lavrov OV, Pyatin VF, Shirolapov IV. Adaptive changes of the indices of the cardiovascular system and serum content of a number of hormones under examination stress condition. Kazan Medical Journal. 2012;93(3):461–464. EDN: OYVDCZ
  46. Kovrov GV, Posokhov SI, Chernikova AG, et al. Validation of ballistocardiography data for predicting the sleep efficiency in healthy individuals and patients with insomnia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(10):60–66. doi: 10.17116/jnevro202412410160 EDN: VVTQDP
  47. Suk HJ, Buie N, Xu G, et al. Vibrotactile stimulation at gamma frequency mitigates pathology related to neurodegeneration and improves motor function. Front Aging Neurosci. 2023;15:1129510. doi: 10.3389/FNAGI.2023.1129510/BIBTEX
  48. Wunram HL, Oberste M, Hamacher S, et al. Immunological effects of an add-on physical exercise therapy in depressed adolescents and its interplay with depression severity. Int J Environ Res Public Health. 2021;18(12):6527. doi: 10.3390/ijerph18126527 EDN: RWWGAZ
  49. Yu JC, Hale VL, Khodadadi H, Baban B. Whole body vibration-induced omental macrophage polarization and fecal microbiome modification in a murine model. Int J Mol Sci. 2019;20:3125. doi: 10.3390/IJMS20133125
  50. Shirolapov IV, Gribkova OV, Kovalev AM, et al. The interactions along the microbiota-gut-brain axis in the regulation of circadian rhythms, sleep mechanisms and disorders. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(5–2):79–86. doi: 10.17116/jnevro202412405279 EDN: BGDKNU
  51. Ma Y, He M, Qiang L. Exercise therapy downregulates the overexpression of TLR4, TLR2, MyD88 and NF-κB after cerebral ischemia in rats. Int J Mol Sci. 2013;14:3718–3733. doi: 10.3390/IJMS14023718
  52. Shirolapov I, Zakharov A, Smirnova D, et al. Aging brain, dementia and impaired glymphatic pathway: causal relationships. Psychiatria Danubina. 2023;35(Suppl. 2):236–244. Available from: https://www.psychiatria-danubina.com/UserDocsImages/pdf/dnb_vol35_noSuppl%202/dnb_vol35_noSuppl%202_236.pdf
  53. Blanks AM, Rodriguez-Miguelez P, Looney J, et al. Whole body vibration elicits differential immune and metabolic responses in obese and normal weight individuals. Brain Behav. Immun. Health. 2020;1:100011. doi: 10.1016/j.bbih.2019.100011 EDN: YKDGUZ
  54. Shirolapov IV, Zakharov AV, Bulgakova SV, et al. Glymphatic dysfunction in the pathogenesis of neurodegenerative diseases and pathological aging. Genes and cells. 2023;18(4):309–322. doi: 10.23868/gc546022 EDN: IPOLTQ
  55. Bulgakova SV, Kurmaev DP, Treneva EV, et al. Influence of nutrition and epigenetics on the development of neurodegenerative diseases in elderly and old people. Experimental and Clinical Gastroenterology. 2024;(8):89–95. doi: 10.31146/1682-8658-ecg-228-8-89-95 EDN: WWLGGX
  56. Rodriguez-Miguelez P, Fernandez-Gonzalo R, Collado PS, et al. Whole-body vibration improves the anti-inflammatory status in elderly subjects through toll-like receptor 2 and 4 signaling pathways. Mech Ageing Dev. 2015;150:12–19. doi: 10.1016/J.MAD.2015.08.002
  57. Pyatin VF, Shirolapov IV, Zhestkov AV, et al. Immunological indices of peripheral blood of elderly women during uniformly accelerated training: results of a 12-week study. Medical Immunology. 2010;12(4–5):413–416. EDN: LLOAQU
  58. Pyatin VF, Zhestkov AV, Shirolapov IV, et al. Immune responses to acceleration (whole body vibration) training: a 24-weeks trial among elderly women. Allergology and immunology. 2010;11(1):42–47. EDN: MVCUBD
  59. Ahuja G, Arauz YLA, van Heuvelen MJG, et al. The effects of whole-body vibration therapy on immune and brain functioning: current insights in the underlying cellular and molecular mechanisms. Front Neurol. 2024;15:1422152. doi: 10.3389/fneur.2024.1422152 EDN: IFEUMJ
  60. Shirolapov IV, Maslova OA, Barashkina KM, et al. Entomophagy as an alternative source of protein and a new food strategy. Kazan Medical Journal. 2023;104(5):733–740. doi: 10.17816/KMJ123526 EDN: FOYULU
  61. Shirolapov I, Zakharov A, Gochhait S, et al. Aquaporin-4 as the main element of the glymphatic system for clearance of abnormal proteins and prevention of neurodegeneration: a review. WSEAS Transactions on Biology and Biomedicine. 2023;20:110–118. doi: 10.37394/23208.2023.20.11 EDN: JTGOEX
  62. Zago M, Capodaglio P, Ferrario C, et al. Whole-body vibration training in obese subjects: a systematic review. PLoS One. 2018;13(9):e0202866. doi: 10.1371/journal.pone.0202866 EDN: YJTPKH
  63. Lavrov OV, Shirolapov IV, Pyatin VF. Stress-induced hormonal reactions in students. Bulletin of new medical technologies. 2012;19(4):110–112. EDN: PJTGGJ
  64. Shirolapov IV, Pyatin VF, Lavrov OV. Features of immunological indicators under examination stress. Medical Immunology. 2012;14(1–2):133–138. EDN: OPHKFD
  65. Boerema AS, Heesterbeek M, Boersma SA, et al. Beneficial effects of whole body vibration on brain functions in mice and humans. Dose Response. 2018;16:1559325818811756. doi: 10.1177/1559325818811756
  66. Arenales Arauz YL, Ahuja G, Kamsma YPT, et al. Potential of whole-body vibration in Parkinson's disease: a systematic review and meta-analysis of human and animal studies. Biology. 2022;11:1238. doi: 10.3390/BIOLOGY11081238 EDN: EMMBOJ
  67. Shirolapov IV. On the mechanism of non-drug bronchodilation in young and elderly people. Postgraduate Bulletin of the Volga Region. 2009;(3–4):170–174. EDN: KVDSEX
  68. Arauz YLA, van der Zee EA, Kamsma YPT, van Heuvelen MJG. Short-term effects of side-alternating whole-body vibration on cognitive function of young adults. PLoS One. 2023;18:e0280063. doi: 10.1371/JOURNAL.PONE.0280063 EDN: SELXWY
  69. Fischer M, Vialleron T, Laffaye G, et al. Long-term effects of whole-body vibration on human gait: a systematic review and meta-analysis. Front Neurol. 2019;10:627. doi: 10.3389/fneur.2019.00627
  70. Kerr N, Sanchez J, Moreno WJ, et al. Post-stroke low-frequency whole-body vibration improves cognition in middle-aged rats of both sexes. Front Aging Neurosci. 2022;14:942717. doi: 10.3389/fnagi.2022.94271 EDN: WXXUUJ
  71. Keijser JN, van Heuvelen MJG, Nyakas C, et al. Whole body vibration improves attention and motor performance in mice depending on the duration of the whole-body vibration session. Afr J Tradit Complement Altern Med. 2017;14:128–134. doi: 10.21010/ajtcam.v14i4.15
  72. Peng G, Yang L, Wu CY, et al. Whole body vibration training improves depression-like behaviors in a rat chronic restraint stress model. Neurochem Int. 2021;142:104926. doi: 10.1016/J.NEUINT.2020.104926 EDN: OQSZVV
  73. Pyatin VF, Kolsanov AV, Shirolapov IV. Recent medical techniques for peripheral nerve repair: clinico-physiological advantages of artificial nerve guidance conduits. Advances in Gerontology. 2017;7(2):148–154. doi: 10.1134/S2079057017020126 EDN: XNNECL
  74. Raval AP, Schatz M, Bhattacharya P, et al. Whole body vibration therapy after ischemia reduces brain damage in reproductively senescent female rats. Int J Mol Sci. 2018;19(9):2749. doi: 10.3390/ijms19092749
  75. Feng L, Li B, Cai M, et al. Resistance exercise alleviates the prefrontal lobe injury and dysfunction by activating SESN2/AMPK/PGC-1α signaling pathway and inhibiting oxidative stress and inflammation in mice with myocardial infarction. Exp Neurol. 2023;370:114559. doi: 10.1016/J.EXPNEUROL.2023.114559 EDN: DZDGUB
  76. Oroszi T, de Boer SF, Nyakas C, et al. Chronic whole body vibration ameliorates hippocampal neuroinflammation, anxiety-like behavior, memory functions and motor performance in aged male rats dose dependently. Sci Rep. 2022;12:1–10. doi: 10.1038/s41598-022-13178-1 EDN: QTNHTH
  77. Amonette WE, Boyle M, Psarakis MB, et al. Neurocognitive responses to a single session of static squats with whole body vibration. J Strength Cond Res. 2015;29:96–100. doi: 10.1519/JSC.0B013E31829B26CE
  78. Yang H, Gao J, Wang HY, et al. The effects and possible mechanisms of whole-body vibration on cognitive function: a narrative review. Brain Res. 2024;1850:149392. doi: 10.1016/j.brainres.2024.149392 EDN: BVBNIO
  79. Pyatin VF, Kolsanov AV, Shirolapov IV. Recent medical techniques for peripheral nerve repair: nerve guidance conduits update. Adv Gerontol. 2016;29(5):742–750. EDN: XXRTMF
  80. Senderovich H, Bayeva N, Montagnese B, Yendamuri A. Managing fall prevention through exercise in older adults afflicted by cognitive and strength impairment. Dement Geriatr Cogn Disord. 2021;50(6):507–518. doi: 10.1159/000521140 EDN: MRFDFJ
  81. Regterschot GRH, Van Heuvelen MJG, Zeinstra EB, et al. Whole body vibration improves cognition in healthy young adults. PLoS One. 2014;9:e100506. doi: 10.1371/JOURNAL.PONE.0100506
  82. Fuermaier ABM, Tucha L, Koerts J, et al. Good vibrations — effects of whole body vibration on attention in healthy individuals and individuals with ADHD. PLoS One. 2014;9:e90747. doi: 10.1371/JOURNAL.PONE.0090747
  83. Shantakumari N, Ahmed M. Whole body vibration therapy and cognitive functions: a systematic review. AIMS Neurosci. 2023;10:130. doi: 10.3934/NEUROSCIENCE.2023010 EDN: GRJNZA
  84. Korovina ES, Glazkova EN, Shirolapov IV, et al. Sensorimotor potentiation of motor imagination as an activator of CNS plasticity. Science and Innovations in Medicine. 2016;(3(3)):33-38. EDN: YKMVRF
  85. Bazanova OМ, Balioz NV, Ermolaeva SА, et al. Study of psychophysiological indicators of sensorimotor Integration in PTSD. Justification of the choice of targets for biofeedback. Fiziologiâ čeloveka. 2024;50(3):63–80. doi: 10.31857/S0131164624030061 EDN: BUNHPP
  86. Shirolapov IV, Zakharov AV, Bulgakova SV, et al. Alzheimer dementia as a consequence of the brain glymphatic system dysfunction. Psychiatry, psychotherapy and clinical psychology. 2023;14(3):291–300. doi: 10.34883/PI.2023.14.3.004 EDN: RHKPXK
  87. Halmai B, Holsgrove TP, Vine SJ, et al. The after-effects of occupational whole-body vibration on human cognitive, visual, and motor function: A systematic review. Appl Ergon. 2024;118:104264. doi: 10.1016/j.apergo.2024.104264 EDN: YUAYLG
  88. Zakharov AV, Bratchenko IA, Bratchenko LA, et al. Deep learning of surface-enhanced Raman spectroscopy data for multiple sclerosis diagnostics. Eur. Phys. J. Spec. Top. 2025. doi: 10.1140/epjs/s11734-024-01449-z EDN: WTPIUS
  89. Chang CM, Tsai CH, Lu MK, et al. The neuromuscular responses in patients with Parkinson's disease under different conditions during whole-body vibration training. BMC Complement Med Ther. 2022;22(1):2. doi: 10.1186/s12906-021-03481-1 EDN: EPXWTW
  90. Choi ET, Kim YN, Cho WS, Lee DK. The effects of visual control whole body vibration exercise on balance and gait function of stroke patients. J Phys Ther Sci. 2016;28(11):3149–3152. doi: 10.1589/jpts.28.3149 EDN: YEVQRX
  91. Wen J, Leng L, Hu M, et al. Effects of whole-body vibration training on cognitive function: a systematic review. Front Hum Neurosci. 2023;17:854515. doi: 10.3389/FNHUM.2023.854515/BIBTEX EDN: DCLCWU
  92. Pyatin VF, Sergeeva MS, Shirolapov IV. Blinking as a mechanism for controlling retinal illumination and the function of its photosensitive ganglion cells. Biomedical Radioelectronics. 2014;(4):67–68. EDN: SEAPAH
  93. Escudero-Uribe S, Hochsprung A, Heredia-Camacho B, Izquierdo-Ayuso G. Effect of training exercises incorporating mechanical devices on fatigue and gait pattern in persons with relapsing-remitting multiple sclerosis. Physiother Can. 2017;69(4):292–302. doi: 10.3138/ptc.2016-19
  94. Shirolapov IV, Zakharov AV, Shishkina AA, et al. Efficiency of computerized cognitive training for prevention of cognitive impairments and stimulation of neuroplasticity. Adv Gerontol. 2024;37(3):221–229. doi: 10.34922/AE.2024.37.3.007 EDN: EXVQXA
  95. Gonçalves de Oliveira R, Coutinho HM, Martins MNM, et al. Impacts of whole-body vibration on muscle strength, power, and endurance in older adults: a systematic review and meta-analysis. J Clin Med. 2023;12(13):4467. doi: 10.3390/jcm12134467 EDN: WFQNUU
  96. Van Heuvelen MJG, Rittweger J, Judex S, et al. Reporting guidelines for whole-body vibration studies in humans, animals and cell cultures: a consensus statement from an international group of experts. Biology. 2021;10(10):965. doi: 10.3390/biology10100965 EDN: YVESJM
  97. Shirolapov IV, Zakharov AV, Smirnova DA, et al. The role of the glymphatic clearance system in the mechanisms of the interactions of the sleep-waking Cycle and the Development of Neurodegenerative Processes. Neurosci Behav Physi. 2024;54(2):199–204. doi: 10.1007/s11055-024-01585-y EDN: HZDLCQ
  98. Moreira-Marconi E, Teixeira-Silva Y, Meirelles AG, et al. inflammatory biomarker responses to whole-body vibration in subjects with different clinical status: a systematic review. Int J Environ Res Public Health. 2022;19(22):14853. doi: 10.3390/ijerph192214853 EDN: IOLLIZ
  99. Yin Y, Wang J, Yu Z, et al. Does whole-body vibration training have a positive effect on balance and walking function in patients with stroke? A meta-analysis. Front Hum Neurosci. 2023;16:1076665. doi: 10.3389/fnhum.2022.1076665 EDN: AEQNIV

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© 2025 Эко-Вектор

Creative Commons License

Эта статья доступна по лицензии
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».