Роль инфламмасомы NLRP3 в патогенезе бронхиальной астмы: механизмы воспаления и новые перспективы терапии
- Авторы: Борукаева И.Х.1, Эдилов К.Г.1, Дзуева А.С.1, Лабазанова М.И.1, Гидизов Х.Р.1
-
Учреждения:
- Кабардино-Балкарский государственный университет им. Х.М. Бербекова
- Выпуск: Том 106, № 2 (2025)
- Страницы: 287-297
- Тип: Обзоры
- URL: https://bakhtiniada.ru/kazanmedj/article/view/292227
- DOI: https://doi.org/10.17816/KMJ646818
- ID: 292227
Цитировать
Аннотация
Статья посвящена патофизиологическим механизмам и терапевтическому потенциалу в лечении бронхиальной астмы, которая представляет собой глобальную проблему здравоохранения. В основе патогенеза бронхиальной астмы лежит иммунное воспаление с образованием инфламмасом, молекулярных комплексов, регулирующих воспалительные реакции. Инфламмасомы, особенно NLRP3, играют ключевую роль в развитии заболевания, взаимодействуя с аллергенами и инициируя сигнальные каскады, которые приводят к выработке провоспалительных цитокинов, таких как интерлейкин-1β (IL-1β) и IL-18. Эти цитокины привлекают иммунные клетки, включая тучные клетки, эозинофилы и Т-лимфоциты, которые способствуют воспалению дыхательных путей, гиперреактивности и обструкции бронхов. Рассмотрены фенотипы бронхиальной астмы, включая инфекционно-зависимую и атопическую астму, а также связь активации инфламмасомы NLRP3 с нарушениями лёгочной функции, стероидорезистентностью и нейтрофильным воспалением. Особое внимание уделено клеточным и молекулярным механизмам, задействованным в формировании воспалительного процесса, включая взаимодействие инфламмасомы с Т-хелперами, макрофагами, эозинофилами и тучными клетками, приводящее к выделению гистамина, гепарина, лизосомальных ферментов, свободных радикалов кислорода, пероксида азота, простагландинов и лейкотриенов. Медиаторы воспаления, такие как IL-4, IL-5, IL-13, вызывают ремоделирование дыхательных путей, гиперсекрецию слизи и бронхоспазм. Кроме того, активация инфламмасом может привести к нарушению барьерной функции эпителия, что ещё более усиливает аллергическое воспаление. В работе акцентируется внимание на хронических изменениях в бронхиальном дереве, вызванных длительным воспалением. Подчёркивается важность регуляции инфламмасом, включая использование селективного ингибитора инфламмасомы NLRP3 — MCC950, который эффективно снижает воспаление, демонстрируя перспективы лечения бронхиальной астмы. В статье делается вывод о важности интеграции исследований инфламмасом в клиническую практику, предполагая, что таргетная терапия (в виде использования MCC950) может преобразовать подход к лечению астмы. Это подчёркивает важность перехода к персонализированной медицине в лечении хронических воспалительных заболеваний, таких как бронхиальная астма.
Полный текст
Открыть статью на сайте журналаОб авторах
Ирина Хасанбиевна Борукаева
Кабардино-Балкарский государственный университет им. Х.М. Бербекова
Email: irborukaeva@yandex.ru
ORCID iD: 0000-0003-1180-228X
SPIN-код: 9102-2336
Scopus Author ID: 23471777400
д-р мед. наук, доцент, зав. каф., каф. нормальной и патологической физиологии человека
Россия, 360051, Нальчик, ул. Горького, д. 5Кемран Германович Эдилов
Кабардино-Балкарский государственный университет им. Х.М. Бербекова
Email: Edilov.kemran@mail.ru
ORCID iD: 0009-0000-7009-1452
студент
Россия, 360051, Нальчик, ул. Горького, д. 5Алина Султанхамидовна Дзуева
Кабардино-Балкарский государственный университет им. Х.М. Бербекова
Email: dzueva01@mail.ru
ORCID iD: 0009-0004-6028-7813
студентка
Россия, 360051, Нальчик, ул. Горького, д. 5Мадина Ильясовна Лабазанова
Кабардино-Балкарский государственный университет им. Х.М. Бербекова
Email: labazanova281001@mail.ru
ORCID iD: 0009-0004-3793-5819
студентка
Россия, 360051, Нальчик, ул. Горького, д. 5Хож-Ахмед Расулаевич Гидизов
Кабардино-Балкарский государственный университет им. Х.М. Бербекова
Автор, ответственный за переписку.
Email: ahmedgidizov@mail.ru
ORCID iD: 0009-0001-8031-0206
студент
Россия, 360051, Нальчик, ул. Горького, д. 5Список литературы
- Asher MI, Rutter CE, Bissell K, et al. Worldwide trends in the burden of asthma symptoms in school-aged children: Global Asthma Network Phase I cross-sectional study. Lancet. 2021;398(10311):1569–1580. doi: 10.1016/S0140-6736(21)01450-1
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2024. Updated May 7, 2024. Available from: https://www.guidelinecentral.com
- Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet. 2018;391(10122):783–800. doi: 10.1016/s0140-6736(17)33311-1
- Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019;18(7):246. doi: 10.3389/fped.2019.00246
- Rouadi PW, Idriss SA, Naclerio RM, et al. Immunopathological features of air pollution and its impact on inflammatory airway diseases (IAD). World Allergy Organization J. 2020;13(10):100467. doi: 10.1016/j.waojou.2020.100467
- Sharma D, Kanneganti TD. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol. 2016;213:617–29. doi: 10.1083/jcb.201602089
- Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci. 2019;20(13):3328. doi: 10.3390/ijms20133328
- Fu J, Wu H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu Rev Immunol. 2023;41:301–316. doi: 10.1146/annurev-immunol-081022-021207
- Paik S, Kim JK, Silwal P, et al. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021;18(5):1141–1160. doi: 10.1038/s41423-021-00670-3
- Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity. 2024;57(4):752–771. doi: 10.1016/j.immuni.2024.03.002
- Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med. 2022;54(2):91–102. doi: 10.1038/s12276-022-00736-w
- Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1. Front Immunol. 2020;11:484. doi: 10.3389/fimmu.2020.00484
- Garanina EE, Martynova EV, Ivanov KY, et al. Inflammasomes: Role in Disease Pathogenesis and Therapeutic Potential. Proceedings of Kazan University. Natural Sciences Series. 2020;162(1):80–111. doi: 10.26907/2542-064X.2020.1.80-111
- Erlich Z, Shlomovitz I, Edry-Botzer L, et al. Macrophages, rather than DCs, are responsible for inflammasome activity in the GM-CSF BMDC model. Nat. Immunol. 2019;20(4):397–406. doi: 10.1038/s41590-019-0313-5
- Evavold CL, Kagan JC. How inflammasomes inform adaptive Immunity. J Mol Biol. 2018;430(2):217–237. doi: 10.1016/j.jmb.2017.09.019
- Ramachandran R, Manan A, Kim J, Choi S. NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. Exp Mol Med. 2024;56(7):1488–1500. doi: 10.1038/s12276-024-01261-8
- Cornut M, Bourdonnay E, Henry T. Transcriptional Regulation of Inflammasomes. Int J Mol Sci. 2020;21(21):8087. doi: 10.3390/ijms21218087
- Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–420. doi: 10.1038/nri.2016.58
- Сhen Y, li Y, Wong GWK. Environmental Exposure and Genetic Predisposition as Risk Factors for Asthma in China. Allergy Asthma & Immunology Research. 2016;8(2):92. doi: 10.4168/aair.2016.8.2.92
- Man SM, Hopkins LJ, Nugent E, et al. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proc Natl Acad Sci U S A. 2014;111(20):7403–7408. doi: 10.1073/pnas.1402911111
- Besnard A-G, Guillou N, Tschopp J, et al. NLRP3 inflammasome is required in murine asthma in the absence of aluminum adjuvant. Allergy. 2011;66:1047–57. doi: 10.1111/j.1398-9995.2011.02586.x
- Klimov VV, Zagreshenko D, Urazova OI, et al. Inflammasome as an early pathophysiological phenomenon of inflammation in skin diseases and other pathologies. Bulletin of Siberian Medicine. 2023;22(2):111–121. doi: 10.20538/1682-0363-2023-2-111-121
- Im H, Ammit AJ. The NLRP3 inflammasome: role in airway inflammation. Lin Exp Allergy. 2014;44(2):160–72. doi: 10.1111/cea.12206
- Pinkerton JW, Kim RY, Robertson AAB, et al. Inflammasomes in the lung. Mol Immunol. 2017;86:44–55. doi: 10.1016/j.molimm.2017.01.014
- Horvat JC, Ali MK, Kim RY, et al. Crucial role for lung iron level and regulation in the pathogenesis and severity of asthma. Eur Respir J. 2020;55(4):1901340. doi: 10.1183/13993003.01340-2019
- Wadhwa R, Dua K, Adcock IM, et al. Cellular mechanisms underlying steroid-resistant asthma. Eur Respir Rev. 2019;28(153):190096. doi: 10.1183/16000617.0096-2019
- Horvat JC, Kim RY, Weaver N, et al. Characterization and inhibition of inflammasome responses in severe and non-severe asthma. Respir Res. 2023;24:303. doi: 10.1186/s12931-023-02603-2
- Li F, Liu Z. Expression of NLRP3 in serum and induced sputum of children with asthma and their relationship with disease severity. Eur J Med Res. 2024;29(1):526. doi: 10.1186/s40001-024-02114-w
- Mamantopoulos M, Ronchi F, McCoy KD, Wullaert A. Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions. Gut Microbes. 2018;9(4):374–381. doi: 10.1080/19490976.2017.1421888
- Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–158. doi: 10.1038/nature18629
- Aghasafari P, George U, Pidaparti R. A review of inflammatory mechanism in airway diseases. Inflamm Res. 2019;68(1):59–74. doi: 10.1007/s00011-018-1191-2
- Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89. doi: 10.1038/s41577-019-0165-0
- Howrylak JA, Nakahira K. Inflammasomes: Key Mediators of Lung Immunity. Rev Physiol. 2017;79:471–494. doi: 10.1146/annurev-physiol-021115-105229
- Horvath GL, Schrum JE, De Nardo CM. et al. Intracellular sensing of microbes and danger signals by the inflammasomes. Immunol Rev. 2011;243:119–135. doi: 10.1111/j.1600-065X.2011.01050.x
- Kim RY, Pinkerton JW, Essilfie AT, et al. Role for NLRP3 Inflammasome-mediated, IL-1beta-Dependent Responses in Severe, Steroid-Resistant Asthma. Am J Respir Crit Care Med. 2017;196:283–97. doi: 10.1164/rccm.201609-1830OC
- Ackland J, Watson A, Wilkinson TMA, Staples KJ. Interrupting the conversation: implications for crosstalk between viral and bacterial infections in the asthmatic airway. Front Allergy. 2021;2:738987. doi: 10.3389/falgy.2021.738987
- Kotrba J, Müller I, Pausder A, et al. Innate players in Th2 and non-Th2 asthma: emerging roles for the epithelial cell, mast cell, and monocyte/macrophage network. Am J Physiol Cell Physiol. 2024;327(6):C1373–C1383. doi: 10.1152/ajpcell.00488.2024
- Albers GJ, Michalaki C, Ogger PP, et al. Airway macrophage glycolysis controls lung homeostasis and responses to aeroallergen. Mucosal Immunol. 2025;18(1):121–134. doi: 10.1016/j.mucimm.2024.10.002
- Gauthier M, Kale SL, Ray A. T1-T2 Interplay in the Complex Immune Landscape of Severe Asthma. Immunol Rev. 2025;330(1):e70011. doi: 10.1111/imr.70011
- Kim RY, Horvat JC, Pinkerton JW, et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J Allergy Clin Immunol. 2017;139:519–32. doi: 10.1016/j.jaci.2016.04.038
- Horvat JC, Kim RY, Weaver N, et al. Characterization and inhibition of inflammasome responses in severe and non-severe asthma. Respir Res. 2023;24:303. doi: 10.1186/s12931-023-02603-2
- Mitchell PS, Sandstrom A, Vance RE. The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr Opin Immunol. 2019;60:37–45. doi: 10.1016/j.coi.2019.04.015
- Ford ML, Reza MI, Ruwanpathirana A, et al. Integrative Roles of Pro-Inflammatory Cytokines on Airway Smooth Muscle Structure and Function in Asthma. Immunol Rev. 2025;330(1):e70007. doi: 10.1111/imr.70007
- Jackson DJ, Wechsler ME, Brusselle G, Buhl R. Targeting the IL-5 pathway in eosinophilic asthma: A comparison of anti-IL-5 versus anti-IL-5 receptor agents. Allergy. 2024;79(11):2943–2952. doi: 10.1111/all.16346
- Murase Y, Takeichi T, Koseki J, et al. UVB-induced skin autoinflammation due to NLRP1b mutation and its inhibition by anti-IL-1β antibody. Front Immunol. 2022;13:876390. doi: 10.3389/fimmu.2022.876390
- Jang JH, Zhou M, Makita K, et al. Induction of a memory-like CD4(+) T-cell phenotype by airway smooth muscle cells. Eur J Immunol. 2024;54(4):e2249800. doi: 10.1002/eji.202249800
- Nobs SP, Pohlmeier L, Li F, et al. GM-CSF instigates a dendritic cell-T-cell inflammatory circuit that drives chronic asthma development. J Allergy Clin Immunol. 2021;147(6):2118–2133.e3. doi: 10.1016/j.jaci.2020.12.638
- Drake MG, Lebold KM, Roth-Carter QR, et al. Eosinophil and airway nerve interactions in asthma. J Leukoc Biol. 2018;104(1):61–67. doi: 10.1002/JLB.3MR1117-426R
- Tsang MS-M, Hou T, Chan BC-L, Wong CK. Immunological roles of NLR in allergic diseases and its underlying mechanisms. Int J Mol Sci. 2021;22:1507. doi: 10.3390/ijms22041507
- Williams EJ, Negewo NA, Baines KJ. Role of the NLRP3 inflammasome in asthma: Relationship with neutrophilic inflammation, obesity, and therapeutic options. J Allergy Clin Immunol. 2021;147(6):2060–2062. doi: 10.1016/j.jaci.2021.04.022
- Liu YJ, Wang HY, Wang R, et al. IgE-FcεRI protein-protein interaction as a therapeutic target against allergic asthma: An updated review. Int J Biol Macromol. 2025;284(Pt1):138099. doi: 10.1016/j.ijbiomac.2024.138099
- Ullah MA, Rittchen S, Li J, et al. Dual therapy with corticosteroid ablates the beneficial effect of DP2 antagonism in chronic experimental asthma. Nat Commun. 2024;15(1):10253. doi: 10.1038/s41467-024-54670-8
- Theofani E, Semitekolou M, Morianos I, et al. Targeting NLRP3 Inflammasome Activation in Severe Asthma. J Clin Med. 2019;8(10):1615. doi: 10.3390/jcm8101615
- Fukuishi N, Takahama K, Kurosaki H, et al. The Role of Endogenous Specialized Proresolving Mediators in Mast Cells and Their Involvement in Inflammation and Resolution. Int J Mol Sci. 2025;26(4):1491. doi: 10.3390/ijms26041491
- Mencarelli A, Bist P, Choi HW, et al. Anaphylactic degranulation by mast cells requires the mobilization of inflammasome components. Nat Immunol. 2024;25(4):693–702. doi: 10.1038/s41590-024-01788-y
- Yadavalli CS, Upparahalli Venkateshaiah S, Kumar S, et al. Allergen-induced NLRP3/caspase1/IL-18 signaling initiate eosinophilic esophagitis and respective inhibitors protect disease pathogenesis. Commun Biol. 2023;6(1):763. doi: 10.1038/s42003-023-05130-4
- Rosenstein RK, Bezbradica JS, Yu S, Medzhitov R. Signaling pathways activated by a protease allergen in basophils. Proc Natl Acad Sci USA. 2014;111(46):E4963–71. doi: 10.1073/pnas.1418959111
- De Corso E, Hellings PW, Fokkens WJ, et al. Thymic Stromal Lymphopoietin (TSLP): Evidence in Respiratory Epithelial-driven Diseases Including Chronic Rhinosinusitis with Nasal Polyps. Curr Allergy Asthma Rep. 2024;25(1):7. doi: 10.1007/s11882-024-01186-2
- Canè L, Poto R, Palestra F, et al. Thymic Stromal Lymphopoietin (TSLP) Is Cleaved by Human Mast Cell Tryptase and Chymase. Int J Mol Sci. 2024;25(7):4049. doi: 10.3390/ijms25074049
- Russell RJ, Boulet LP, Brightling CE, et al. The airway epithelium: an orchestrator of inflammation, a key structural barrierand a therapeutic target in severe asthma. Eur Respir J. 2024;63(4):2301397. doi: 10.1183/13993003.01397-2023
- Emanuel E, Arifuzzaman M, Artis D. Epithelial-neuronal-immune cell interactions: Implications for immunity, inflammation, and tissue homeostasis at mucosal sites. J Allergy Clin Immunol. 2024;153(5):1169–1180. doi: 10.1016/j.jaci.2024.02.004
- Varricchi G, Brightling CE, Grainge C, et al. Airway remodelling in asthma and the epithelium: on the edge of a new era. Eur Respir J. 2024;63(4):2301619. doi: 10.1183/13993003.01619-2023
- Zhou M, Sun R, Jang J, Martin JG. T cell and airway smooth muscle interaction: a key driver of asthmatic airway inflammation and remodeling. Am J Physiol Lung Cell Mol Physiol. 2024;327(3):L382–L394. doi: 10.1152/ajplung.00121.2024
- Zhang H, Wei R, Yang X, et al. AMFR drives allergic asthma development by promoting alveolar macrophage-derived GM-CSF production. J Exp Med. 2022;219(5):e20211828. doi: 10.1084/jem.20211828
- Ding Z, Yu F, Sun Y, et al. ORMDL3 Promotes Angiogenesis in Chronic Asthma Through the ERK1/2/VEGF/MMP-9 Pathway. Front Pediatr. 2022;9:708555. doi: 10.3389/fped.2021.708555
- Kraik K, Tota M, Laska J, et al. The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells. 2024;13(15):1271. doi: 10.3390/cells13151271
- Osei ET, Florez-Sampedro L, Timens W, et al. NLRP3 inflammasome activation in obstructive airway diseases. Allergy. 2020;75(7):1546–1558. doi: 10.1111/all.14246
- Manoharan RR, Prasad A, Pospíšil P, Kzhyshkowska J. ROS signaling in innate immunity via oxidative protein modifications. Front Immunol. 2024;15:1359600. doi: 10.3389/fimmu.2024.1359600
- Nagasaki T, Wenzel SE. Asthma exacerbations and airway redox imbalance under type 2 inflammatory conditions. Respir Investig. 2024;62(6):923–928. doi: 10.1016/j.resinv.2024.08.003
- Afriyie-Mensah JS, Domoyeri P, Antwi-Boasiako C, et al. Relationship between fraction of exhaled nitric oxide and peripheral eosinophilia in asthma. Ann Med. 2024;56(1):2382377. doi: 10.1080/07853890.2024.2382377
- Tufvesson E, Andersson C, Weidner J, et al. Inducible nitric oxide synthase expression is increased in the alveolar compartment of asthmatic patients. Allergy. 2017;72(4):627–635. doi: 10.1111/all.13052
- AbuJabal R, Ramakrishnan RK, Bajbouj K, Hamid Q. Role of IL-5 in asthma and airway remodelling. Clin Exp Allergy. 2024;54(8):538–549. doi: 10.1111/cea.14489
- Esnault S, Johansson MW, Mathur SK. Eosinophils, beyond IL-5. Cells. 2021;10(10):2615. doi: 10.3390/cells10102615
- Zhu C, Weng Q, Gao S, et al. TGF-β signaling promotes eosinophil activation in inflammatory responses. Cell Death Dis. 2024;15(8):637. doi: 10.1038/s41419-024-07029-2
- Jackson DJ, Akuthota P, Roufosse F. Eosinophils and eosinophilic immune dysfunction in health and disease. Eur Respir Rev. 2022;31(163):210150. doi: 10.1183/16000617.0150-2021
- Ngo U, Shi Y, Woodruff P, et al. L-13 and IL-17A activate β1 integrin through an NF-kB/Rho kinase/PIP5K1γ pathway to enhance force transmission in airway smooth muscle. Proc Natl Acad Sci USA. 2024;121(34):e2401251121. doi: 10.1073/pnas.2401251121
- Romano Ibarra GS, Lei L, Yu W, et al. IL-13 induces loss of CFTR in ionocytes and reduces airway epithelial fluid absorption. J Clin Invest. 2024;134(21):e181995. doi: 10.1172/JCI181995
- Nakagome K, Nagata M. The Possible Roles of IL-4/IL-13 in the Development of Eosinophil-Predominant Severe Asthma. Biomolecules. 2024;14(5):546. doi: 10.3390/biom14050546
- Wang L, Netto KG, Zhou L, et al. Single-cell transcriptomic analysis reveals the immune landscape of lung in steroid-resistant asthma exacerbation. Proc Natl Acad Sci USA. 2021;118(2):e2005590118. doi: 10.1073/pnas.2005590118
- Gu W, Huang C, Chen G, et al. The role of extracellular traps released by neutrophils, eosinophils, and macrophages in asthma. Respir Res. 2024;25(1):290. doi: 10.1186/s12931-024-02923-x
- Yang X, Li H, Ma Q, et al. Neutrophilic Asthma Is Associated with Increased Airway Bacterial Burden and Disordered Community Composition. Biomed Res Int. 2018;2018:9230234. doi: 10.1155/2018/9230234
- Xie C, Xu W, Rao S, et al. The Role of Th17/Treg Imbalance, FeNO, Eosinophils, IgE and Their Correlation with Lung Function Parameters with Asthma-chronic Obstructive Pulmonary Disease. Iran J Allergy Asthma Immunol. 2024;23(6):625–640. doi: 10.18502/ijaai.v23i6.17373
- Sage SE, Leeb T, Jagannathan V, Gerber V. Single-cell profiling of bronchoalveolar cells reveals a Th17 signature in neutrophilic severe equine asthma. Immunology. 2024;171(4):549–565. doi: 10.1111/imm.13745
- Ritzmann F, Lunding LP, Bals R, et al. IL-17 Cytokines and Chronic Lung Diseases. Cells. 2022;11(14):2132. doi: 10.3390/cells11142132
- Wen Y, Chen Q, Wang H, et al. Contribution of IL-17C-mediated macrophage polarization to Type 17 inflammation in neutrophilic asthma. Cell Commun Signal. 2024;22(1):557. doi: 10.1186/s12964-024-01937-8
- Jin Y, Fleishman JS, Ma Y, et al. NLRP3 Inflammasome Targeting Offers a Novel Therapeutic Paradigm for Sepsis-Induced Myocardial Injury. Drug Des Devel Ther. 2025;19:1025–1041. doi: 10.2147/DDDT.S506537
- Acioglu C, Elkabes SJ. Innate immune sensors and regulators at the blood brain barrier: focus on toll-like receptors and inflammasomes as mediators of neuro-immune crosstalk and inflammation. Neuroinflammation. 2025;22(1):39. doi: 10.1186/s12974-025-03360-3
- Wang H, Ma L, Su W, et al. NLRP3 inflammasome in health and disease (Review). Int J Mol Med. 2025;55(3):48. doi: 10.3892/ijmm.2025.5489
- Lou S, Wu M, Cui S. Targeting NLRP3 Inflammasome: Structure, Function, and Inhibitors. Curr Med Chem. 2024;31(15):2021–2051. doi: 10.2174/0109298673289984231127062528
- Farhangian M, Azarafrouz F, Valian N, Dargahi L. The role of interferon beta in neurological diseases and its potential therapeutic relevance. Eur J Pharmacol. 2024;981:176882. doi: 10.1016/j.ejphar.2024.176882
- Yang BY, Cheng YG, Liu Y, et al. Datura Metel L. Ameliorates Imiquimod-Induced Psoriasis-Like Dermatitis and Inhibits Inflammatory Cytokines Production through TLR7/8-MyD88-NF-kappaB-NLRP3 Inflammasome Pathway. Molecules. 2019;24(11):2157. doi: 10.3390/molecules24112157
- Vetter C, Schieb J, Vedder N, et al. The impact of IL-10 and IL-17 on myeloid-derived suppressor cells in vitro and in vivo in a murine model of asthma. Eur J Immunol. 2024;54(7):e2350785. doi: 10.1002/eji.202350785
- Akdis CA. Immunological mechanisms and treatment of allergic diseases: NLRP3 inflammasome in focus. Journal of Allergy and Clinical Immunology. 2019;144(2):375–385. doi: 10.1016/j.jaci.2019.06.001
- Zhang X, Wang Z, Zheng Y, et al. Inhibitors of the NLRP3 inflammasome pathway as promising therapeutic candidates for inflammatory diseases (Review). Int J Mol Med. 2023;51(4):35. doi: 10.3892/ijmm.2023.5238
- Tang J, Liu Y, Wu Y, et al. Saponins as potential novel NLRP3 inflammasome inhibitors for inflammatory disorders. Arch Pharm Res. 2024;47(10–11):757–792. doi: 10.1007/s12272-024-01517-x
- Li H, Guan Y, Liang B, et al. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome. Eur J Pharmacol. 2022;928:175091. doi: 10.1016/j.ejphar.2022.175091
- Netea MG, Joosten LA. Inflammasome inhibition: Putting out the fire. Cell Metab. 2015;21(4):513–514. doi: 10.1016/j.cmet.2015.03.012
- Angosto-Bazarra D, Molina-López C, Peñín-Franch A, et al. Techniques to study inflammasome activation and inhibition by small molecules. Molecules. 2021;26(6):1704. doi: 10.3390/ molecules26061704
- Coll RC, Hill JR, Day CJ, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol. 2019;15(6):556–559. doi: 10.1038/s41589-019-0277-7
- Wu D, Chen Y, Sun Y, et al. Target of MCC950 in Inhibition of NLRP3 Inflammasome Activation: a Literature Review. Inflammation. 2020;43(1):17–23. doi: 10.1007/s10753-019-01098-8
- Ward R, Li W, Abdul Y, et al. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacol Res. 2019;142(237):250. doi: 10.1016/j.phrs.2019.01.035
- Zhai Y, Meng X, Ye T, et al. Inhibiting the NLRP3 inflammasome activation with MCC950 ameliorates diabetic encephalopathy in db/db mice. Molecules. 2018;23(3):1–14. doi: 10.3390/molecules23030522
- Dempsey C, Araiz AR, Bryson KJ, et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav Immun. 2017;61:306–316. doi: 10.1016/j.bbi.2016.12.014
- Van der Heijden T, Kritikou E, Venema W, et al. NLRP3 inflammasome inhibition by MCC950 reduces atherosclerotic lesion development in apolipoprotein E-deficient mice-brief report. Arterioscler Thromb Vasc Biol. 2017;37(8):1457–1461. doi: 10.1161/ATVBAHA.117.309575
- Qu J, Yuan Z, Wang G, et al. The selective NLRP3 inflammasome inhibitor MCC950 alleviates cholestatic liver injury and fibrosis in mice. Int Immunopharmacol. 2019;70:147–155. doi: 10.1016/j.intimp.2019.02.016
- Chen S, Yao L, Huang P, et al. Blockade of the NLRP3/caspase-1 axis ameliorates airway neutrophilic inflammation in a toluene diisocyanate-induced murine asthma model. Toxicol. Sci. 2019;170(2):462–475. doi: 10.1093/toxsci/kfz099
Дополнительные файлы
