Perspectives for the use of the antidiabetic drug metformin as a strategy to slow biological aging and age-related diseases
- Authors: Hafizova A.Z.1, Semina I.I.1, Nikitin D.O.1, Mustafin R.I.1
-
Affiliations:
- Kazan State Medical University
- Issue: Vol 106, No 1 (2025)
- Pages: 105-116
- Section: Reviews
- URL: https://bakhtiniada.ru/kazanmedj/article/view/286131
- DOI: https://doi.org/10.17816/KMJ382686
- ID: 286131
Cite item
Abstract
This review focuses on the use of the antidiabetic drug metformin as one of the most studied geroprotective candidates with a well-established safety profile. The primary theories of aging and the development of age-related diseases, such as type 2 diabetes mellitus (T2DM) and Alzheimer disease, as well as the relationship between T2DM and the development of cognitive impairment, are reviewed. Metformin is hypothesized to improve cognitive function, mitigate the severity of anxiety, and reduce the risk of developing Alzheimer disease. In addition, metformin is able to decelerate the aging process and increase longevity in experiments in mice and rats. Despite being among the most frequently prescribed medications globally, with the ability to cross the blood-brain barrier and distribute to all brain regions, the precise mechanisms underlying its effects on the brain remain unclear. Studies show that metformin is able to activate 5'-adenosine monophosphate-activated protein kinase, reduce the levels of advanced glycation endproducts, and restore mitochondrial function. Moreover, metformin enhances autophagy and exerts a neuroprotective effect on neural stem cells. The findings of numerous studies indicate that metformin has antioxidant and anti-inflammatory properties.
Full Text
##article.viewOnOriginalSite##About the authors
Ajgul Z. Hafizova
Kazan State Medical University
Author for correspondence.
Email: aygul_khafizova_1997@mail.ru
ORCID iD: 0000-0002-7690-7341
SPIN-code: 6140-5941
Postgrad. Stud., Depart. of Pharmacology
Russian Federation, 6/30 Tolstoy St., 420015 KazanIrina I. Semina
Kazan State Medical University
Email: seminai@mail.ru
ORCID iD: 0000-0003-3515-0845
SPIN-code: 4385-3650
MD, Dr. Sci. (Med.), prof., Depart. of Pharmacology, head of the Central Research Laboratory
Russian Federation, 6/30 Tolstoy St., 420015 KazanDmitry O. Nikitin
Kazan State Medical University
Email: Richard4777@Yandex.ru
ORCID iD: 0000-0001-5773-867X
SPIN-code: 3132-2628
Assistant, Depart. of Pharmacology
Russian Federation, 6/30 Tolstoy St., 420015 KazanRuslan I. Mustafin
Kazan State Medical University
Email: ruslan.mustafin@kazangmu.ru
ORCID iD: 0000-0002-0916-2853
SPIN-code: 9244-1081
Cand. Sci. (Pharm.), Assoc. Prof., Director of the Institute of Pharmacy
Russian Federation, 6/30 Tolstoy St., 420015 KazanReferences
- United Nations Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022: Summary of Results. United Nations, 2022.
- Ageing [Internet]. United Nations Population Fund. [cited 2022 Dec 30]. Available from: https://www.unfpa.org/ageing#readmore-expand
- Population of the Russian Federation by gender and age [Internet]. FEDERAL STATE STATISTICS SERVICE (ROSSTAT). [cited 2022 Dec 01]. Available from: https://rosstat.gov.ru/storage/mediabank/Bul_chislen_nasel-pv_01-01-2021.pdf (In Russ.)
- Ferrucci L, Gonzalez-Freire M, Fabbri E, et al. Measuring biological aging in humans: A quest. Aging cell. 2020;19(2):e13080. doi: 10.1111/acel.13080
- Li Z, Zhang Z, Ren Y, et al. Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology. 2021;22(2):165–187. doi: 10.1007/s10522-021-09910-5
- Arafa NMS, Marie MA, AlAzimi SA. Effect of canagliflozin and metformin on cortical neurotransmitters in a diabetic rat model. Chemico-Biological Interactions. 2016;258:79–88. doi: 10.1016/j.cbi.2016.08.016
- Ekusheva EV. Cognitive impairment — relevant interdisciplinary problem. Russian Medical Journal. 2018;12(I):32–37. EDN: YOCIRN
- Sanchez-Rangel E, Inzucchi SЕ. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586–1593. doi: 10.1007/s00125-017-4336-x
- Bailey CJ. Metformin: historical overview. Diabetologia. 2017;60(9):1566–1576. doi: 10.1007/s00125-017-4318-z
- United Nations [internet]. Diabetes is not a death sentence: thousands of Ukrainians tested with UN support. [cited 2023 Dec 01]. Available from: https://news.un.org/ru/story/2021/11/1413872 (In Russ.)
- Khan MAB, Hashim MJ, King JK, et al. Epidemiology of type 2 diabetes–global burden of disease and forecasted trends. J epidemiol glob health. 2020;10(1):107. doi: 10.2991/jegh.k.191028.001
- Markowicz-Piasecka M, Huttunen MK, Mateusiak L, et al. Is metformin a perfect drug? Updates in pharmacokinetics and pharmacodynamics. Curr Pharmaceut Design. 2017;23(17):2532–2550. doi: 10.2174/1381612822666161201152941
- Kuznik BI, Chalisova NI, Tzibikov NN, et al. Stress, aging and united humoral protective system of the organism. Epigenetic mechanisms of regulation. Advances in the physiological sciences. 2020;51(3):51–68. doi: 10.31857/S030117982002006X
- Pristrom MS, Pristrom SL, Semenenkov II. Physiological and early aging. Modern view of the problem. Meditsinskie novosti. 2017;5–6(28):40–64.
- Savina NV, Nikitchenko NV, Kuzhir TD, Goncharova RI. Polymorphism of genes coding dna helicases: impact on the life span. Molekulyarnaya i prikladnaya genetika. 2016;20:46–54. doi: 10.23888/HMJ201973340-348
- Bogolepova AN, Vasenina EE, Gomzyakova NA, et al. Clinical Guidelines for Cognitive Disorders in Elderly and Older Patients. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2021;121(10–3):6–137. doi: 10.17116/jnevro20211211036
- Zotkin EG, Dydykina IS, Lila AM. Inflammaging, age-related diseases and osteoarthritis. Russian Medical Journal. 2020;7:33–38. EDN: WUCBVJ
- Du Y, Gao Y, Zeng B, et al. Effects of anti-aging interventions on intestinal microbiota. Gut Microbes. 2021;13(1):1994835. doi: 10.1080/19490976.2021.1994835
- Kim M, Benayoun BA. The microbiome: an emerging key player in aging and longevity. Transl Med Aging. 2020;4:103–116. doi: 10.1016/j.tma.2020.07.004
- Topolyanskaya SV. Interleukin 6 in aging and age–related diseases. The clinician. 2020;14(3–4):10–17. doi: 10.17650/1818-8338-2020-14-3-4-К-633
- Li Z, Zhang Z, Ren Y, et al. Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology. 2021;22(2):165–187. doi: 10.1007/s10522-021-09910-5
- Mathews J, Davy PM, Gardner LH, Allsopp RC. Stem cells, telomerase regulation and the hypoxic state. Frontiers in Bioscience. 2016;21(2):303–315. doi: 10.2741/4389
- Zhu Y, Liu X, Ding X, et al. Telomere, and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology. 2019;20(1):1–16. doi: 10.1007/s10522-018-9769-1
- Ahmad R, Haque M. Oral Health Messiers: Diabetes Mellitus Relevance. Diabet metab syndr obes. 2021;14:3001–3015. doi: 10.2147/DMSO.S318972
- Markowicz-Piasecka M, Sikora J, Szydłowska A, et al. Metformin – a future therapy for neurodegenerative diseases. Pharmaceutical research. 2017;34(12):2614–2627. doi: 10.1007/s11095-017-2199-y
- Du Y, Gao Y, Zeng B, et al. Effects of anti-aging interventions on intestinal microbiota. Gut Microbes. 2021;13(1):1994835. doi: 10.1080/19490976.2021.1994835
- Paltsev MA, Polyakova VO, Linkova NS, et al. Molecular and cellular mechanisms of Alzheimer’s disease. Molecular medicine. 2016;14(6):3–10. EDN: XHLYSV
- Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer’s disease a type 3 diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1078–1089. doi: 10.1016/j.bbadis.2016.08.018
- De Sousa RAL, Harmer AR, Freitas DA, et al. An update on potential links between type 2 diabetes mellitus and Alzheimer’s disease. Molecular Biology Reports. 2020;47(8):6347–6356. doi: 10.1007/s11033-020-05693-z
- Zhang J, Chen C, Hua S, et al. An updated meta-analysis of cohort studies: diabetes and risk of Alzheimer’s disease. Diabetes research and clinical practice. 2017;124:41–47. doi: 10.1016/j.diabres.2016.10.024
- Ostroumova OD, Surkova EV, Goloborodova IV, et al. Hypoglycemia and the risk of cognitive impairment and dementia in elderly and senile patients with type 2 diabetes. Diabetes. 2020;23(1):72–87. doi: 10.14341/DM10202
- Kim WJ, Lee SJ, Lee E, et al. Risk of Incident Dementia According to Glycemic Status and Comorbidities of Hyperglycemia: A Nationwide Population–Based Cohort Study. Diabetes care. 2022;45(1):134–141. doi: 10.2337/dc21-0957
- Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics, and treatment of Alzheimer’s disease. Current Neuropharmacology. 2020;18(11):1106–1125. doi: 10.2174/1570159X18666200528142429
- Cassano V, Leo A, Tallarico M, et al. Metabolic and cognitive effects of ranolazine in Type 2 Diabetes Mellitus: Data from an in vivo Model. Nutrients. 2020;12(2):382. doi: 10.3390/nu12020382
- Shcherbakova EM. Population aging and sustainable development. Demoscope Weekly. 2016;(709–710):15–30. (In Russ.) EDN: XDYGPX
- Moskalev АA, Guvatova Z, Lopes IDA, et al. Targeting aging mechanisms: pharmacological perspectives. Trends in Endocrinology & Metabolism. 2022;33(4):266–280. doi: 10.1016/j.tem.2022.01.007
- Rayson A, Boudiffa M, Naveed M, et al. Geroprotectors and Skeletal Health: Beyond the Headlines. Front Cell Dev Biol. 2022;10:682045. doi: 10.3389/fcell.2022.682045
- Moskalev AА, Chernyagina E, Kudryavtseva A, Shaposhnikov MV. Geroprotectors: A Unified Concept and Screening Approaches. Aging and Disease. 2017;8(3). doi: 10.14336/AD.2016.102
- Moskalev AА, Shaposhnikov MV, Solovev IA. Studying the geroprotective effects of inhibitors suppressing aging-associated signaling cascades in model organisms. Medical News of North Caucasus. 2017;12(3):342–7. doi: 10.14300/mnnc.2017.12090
- Gilmutdinova IR, Kudryashova IS, Kostormina EY, et al. Modern Approaches to Diagnostic and Correction of Aging Biomarkers. Bulletin of Rehabilitation Medicine. 2021;20(6):96–102. doi: 10.38025/2078-19
- Wang C, Liu C, Gao K, et al. Metformin preconditioning provide neuroprotection through enhancement of autophagy and suppression of inflammation and apoptosis after spinal cord injury. Biochem Biophys Res Commun. 2016;477(4):534–540. doi: 10.1016/j.bbrc.2016.05.148
- Chiang MC, Cheng YC, Chen SJ, et al. Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cell agains amyloid-betainduced mitochodrial dysfunction. Experimental Cell Research. 2016;347(2):322–31. doi: 10.1016/j.yexcr.2016.08.013
- Chung MM, Chen YL, Pei D, et al. The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK-dependent. Biochim Biophys Acta. 2015;1852(5):720–31. doi: 10.1016/j.bbadis.2015.01.006
- Benito-Cuesta I, Ordonez-Gutierrez L, Wandosell F. AMPK activation does not enhance autophagy in neurons in contrast to MTORC1 inhibition: Different impact on beta-amyloid clearance. Autophagy. 2021;17:656–671. doi: 10.1080/15548627.2020.1728095
- Guangli Lu, Zhen W, Jia S, et al. The effects of metformin on autophagy. Biomed Pharmacother. 2021;137:111286. doi: 10.1016/j.biopha.2021.111286
- Chung MM, Nicol CJ, Cheng YC, et al. Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs. Experimental Cell Research. 2017;352:75–83. doi: 10.1016/j.yexcr.2017.01.017
- Oliveira WH, Nunes AK, RochaFrança ME, et al. Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice. Brain Research. 2016;1644:149–60. doi: 10.1016/j.brainres.2016.05.013
- Thies W, Bleile L. Alzheimer’s disease facts and figures. Alzheimers Dementia. 2022;18(4):700–789. doi: 10.1002/alz.12638
- Ashrostaghi Z, Ganji F, Sepehri H. Effect of metformin on the spatial memory in aged rats. National Journal of Physiology Pharmacy and Pharmacology. 2015;5:416–420. doi: 10.5455/njppp.2015.5.1208201564
- Qin Z, Zhou C, Xiao X, Guo C. Metformin attenuates sepsis-induced neuronal injury and cognitive impairment. BMC Neuroscience. 2021;22(1):78. doi: 10.1186/s12868-021-00683-8
- Le Douce J, Maugard M, Veran J, et al. Impairment of glycolysis–derived l–serine production in astrocytes contributes to cognitive deficits in Alzheimer’s disease. Cell metabolism. 2020;31(3):503–517. doi: 10.1016/j.cmet.2020.02.004
- Ruyatkina LA, Ruyatkin DS. Multidimensional effects of metformin in patients with type 2 diabetes. Diabetes mellitus. 2017;20(3):210–219. doi: 10.14341/DM2003458-64
- Wang CP, Lorenzo C, Habib SL, et al. Differential effects of metformin on age related comorbidities in older men with type 2 diabetes. J Diabetes Complications. 2017;31:679–686. doi: 10.1016/j.jdiacomp.2017.01.013
- Samaras K, Makkar S, Crawford JD, et al. Metformin Use Is Associated with Slowed Cognitive Decline and Reduced Incident Dementia in Older Adults with Type 2 Diabetes: The Sydney Memory and Ageing Study. Diabetes Care. 2020;43:2691–2701. doi: 10.2337/dc20-0892
- Kuan YC, Huang KW, Lin CL, et al. Effects of metformin exposure on neurodegenerative diseases in elderly patients with type 2 diabetes mellitus. Prog. Neuropsychopharmacol. Progress in Neuro-Psychopharmacology and Biological Psychiatry.2017;79:77–83. doi: 10.1016/j.pnpbp.2017.06.002
- Ou Z, Kong X, Sun X, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behavior and Immunity. 2018;69:351–363. doi: 10.1016/j.bbi.2017.12.009
- Farr SA, Roesler E, Niehoff ML, et al. Metformin Improves Learning and Memory in the SAMP8 Mouse Model of Alzheimer’s Disease. Journals of Alzheimer’s Disease. 2019;68:1699–1710. doi: 10.3233/JAD-181240
- Levin OS, Chimagomedova ASh, Arefieva AP. Anxiety in the elderly. Korsakov Journal of Neurology and Psychiatry. 2019;119(6):113–118. doi: 10.17116/jnevro2019119061113
- Gribanov AV, Dzhos YuS, Deryabina IN, et al. An aging brain: morphofunctional aspects. Korsakov Journal of Neurology and Psychiatry. 2017;117(1–2):3–7. doi: 10.17116/jnevro2017117123-7
- Fang W, Zhang J, Hong L, et al. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. Journal of Affective Disorders. 2020;260:302–313. doi: 10.1016/j.jad.2019.09.013
- Fan J, Di Li, Hong-Sheng C, et al. Metformin produces anxiolytic-like effects in rats by facilitating GABAA receptor trafficking to membrane. British Journal of Pharmacology. 2019;176:297–316. doi: 10.1111/bph.14519
- Owen MD, Baker BC, Scott EM, Forbes K. Interaction between Metformin, Folate and Vitamin B12 and the Potential Impact on Fetal Growth and Long-Term Metabolic Health in Diabetic Pregnancies. Int J mol sci. 2021;22(11):5759. doi: 10.3390/ijms22115759
- Connelly PJ, Lonergan M, Soto-Pedre E, et al. Acute kidney injury, plasma lactate concentrations and lactic acidosis in metformin users: A GoDarts study. Diabetes Obes Metab. 2017;19(11):1579–1586. doi: 10.1111/dom.12978
- Madsen KS, Kähler P, Kähler LKA, et al. Metformin and second-or third generation sulphonylurea combination therapy for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2019;4(4). doi: 10.1002/14651858.CD012368.pub2
- Mohammed I, Hollenberg MD, Ding H, Triggle CR. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front Endocrinol. 2021;12:718942. doi: 10.3389/fendo.2021.718942
Supplementary files
