Perspectives for the use of the antidiabetic drug metformin as a strategy to slow biological aging and age-related diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This review focuses on the use of the antidiabetic drug metformin as one of the most studied geroprotective candidates with a well-established safety profile. The primary theories of aging and the development of age-related diseases, such as type 2 diabetes mellitus (T2DM) and Alzheimer disease, as well as the relationship between T2DM and the development of cognitive impairment, are reviewed. Metformin is hypothesized to improve cognitive function, mitigate the severity of anxiety, and reduce the risk of developing Alzheimer disease. In addition, metformin is able to decelerate the aging process and increase longevity in experiments in mice and rats. Despite being among the most frequently prescribed medications globally, with the ability to cross the blood-brain barrier and distribute to all brain regions, the precise mechanisms underlying its effects on the brain remain unclear. Studies show that metformin is able to activate 5'-adenosine monophosphate-activated protein kinase, reduce the levels of advanced glycation endproducts, and restore mitochondrial function. Moreover, metformin enhances autophagy and exerts a neuroprotective effect on neural stem cells. The findings of numerous studies indicate that metformin has antioxidant and anti-inflammatory properties.

About the authors

Ajgul Z. Hafizova

Kazan State Medical University

Author for correspondence.
Email: aygul_khafizova_1997@mail.ru
ORCID iD: 0000-0002-7690-7341
SPIN-code: 6140-5941

Postgrad. Stud., Depart. of Pharmacology

Russian Federation, 6/30 Tolstoy St., 420015 Kazan

Irina I. Semina

Kazan State Medical University

Email: seminai@mail.ru
ORCID iD: 0000-0003-3515-0845
SPIN-code: 4385-3650

MD, Dr. Sci. (Med.), prof., Depart. of Pharmacology, head of the Central Research Laboratory

Russian Federation, 6/30 Tolstoy St., 420015 Kazan

Dmitry O. Nikitin

Kazan State Medical University

Email: Richard4777@Yandex.ru
ORCID iD: 0000-0001-5773-867X
SPIN-code: 3132-2628

Assistant, Depart. of Pharmacology

Russian Federation, 6/30 Tolstoy St., 420015 Kazan

Ruslan I. Mustafin

Kazan State Medical University

Email: ruslan.mustafin@kazangmu.ru
ORCID iD: 0000-0002-0916-2853
SPIN-code: 9244-1081

Cand. Sci. (Pharm.), Assoc. Prof., Director of the Institute of Pharmacy

Russian Federation, 6/30 Tolstoy St., 420015 Kazan

References

  1. United Nations Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022: Summary of Results. United Nations, 2022.
  2. Ageing [Internet]. United Nations Population Fund. [cited 2022 Dec 30]. Available from: https://www.unfpa.org/ageing#readmore-expand
  3. Population of the Russian Federation by gender and age [Internet]. FEDERAL STATE STATISTICS SERVICE (ROSSTAT). [cited 2022 Dec 01]. Available from: https://rosstat.gov.ru/storage/mediabank/Bul_chislen_nasel-pv_01-01-2021.pdf (In Russ.)
  4. Ferrucci L, Gonzalez-Freire M, Fabbri E, et al. Measuring biological aging in humans: A quest. Aging cell. 2020;19(2):e13080. doi: 10.1111/acel.13080
  5. Li Z, Zhang Z, Ren Y, et al. Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology. 2021;22(2):165–187. doi: 10.1007/s10522-021-09910-5
  6. Arafa NMS, Marie MA, AlAzimi SA. Effect of canagliflozin and metformin on cortical neurotransmitters in a diabetic rat model. Chemico-Biological Interactions. 2016;258:79–88. doi: 10.1016/j.cbi.2016.08.016
  7. Ekusheva EV. Cognitive impairment — relevant interdisciplinary problem. Russian Medical Journal. 2018;12(I):32–37. EDN: YOCIRN
  8. Sanchez-Rangel E, Inzucchi SЕ. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586–1593. doi: 10.1007/s00125-017-4336-x
  9. Bailey CJ. Metformin: historical overview. Diabetologia. 2017;60(9):1566–1576. doi: 10.1007/s00125-017-4318-z
  10. United Nations [internet]. Diabetes is not a death sentence: thousands of Ukrainians tested with UN support. [cited 2023 Dec 01]. Available from: https://news.un.org/ru/story/2021/11/1413872 (In Russ.)
  11. Khan MAB, Hashim MJ, King JK, et al. Epidemiology of type 2 diabetes–global burden of disease and forecasted trends. J epidemiol glob health. 2020;10(1):107. doi: 10.2991/jegh.k.191028.001
  12. Markowicz-Piasecka M, Huttunen MK, Mateusiak L, et al. Is metformin a perfect drug? Updates in pharmacokinetics and pharmacodynamics. Curr Pharmaceut Design. 2017;23(17):2532–2550. doi: 10.2174/1381612822666161201152941
  13. Kuznik BI, Chalisova NI, Tzibikov NN, et al. Stress, aging and united humoral protective system of the organism. Epigenetic mechanisms of regulation. Advances in the physiological sciences. 2020;51(3):51–68. doi: 10.31857/S030117982002006X
  14. Pristrom MS, Pristrom SL, Semenenkov II. Physiological and early aging. Modern view of the problem. Meditsinskie novosti. 2017;5–6(28):40–64.
  15. Savina NV, Nikitchenko NV, Kuzhir TD, Goncharova RI. Polymorphism of genes coding dna helicases: impact on the life span. Molekulyarnaya i prikladnaya genetika. 2016;20:46–54. doi: 10.23888/HMJ201973340-348
  16. Bogolepova AN, Vasenina EE, Gomzyakova NA, et al. Clinical Guidelines for Cognitive Disorders in Elderly and Older Patients. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2021;121(10–3):6–137. doi: 10.17116/jnevro20211211036
  17. Zotkin EG, Dydykina IS, Lila AM. Inflammaging, age-related diseases and osteoarthritis. Russian Medical Journal. 2020;7:33–38. EDN: WUCBVJ
  18. Du Y, Gao Y, Zeng B, et al. Effects of anti-aging interventions on intestinal microbiota. Gut Microbes. 2021;13(1):1994835. doi: 10.1080/19490976.2021.1994835
  19. Kim M, Benayoun BA. The microbiome: an emerging key player in aging and longevity. Transl Med Aging. 2020;4:103–116. doi: 10.1016/j.tma.2020.07.004
  20. Topolyanskaya SV. Interleukin 6 in aging and age–related diseases. The clinician. 2020;14(3–4):10–17. doi: 10.17650/1818-8338-2020-14-3-4-К-633
  21. Li Z, Zhang Z, Ren Y, et al. Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology. 2021;22(2):165–187. doi: 10.1007/s10522-021-09910-5
  22. Mathews J, Davy PM, Gardner LH, Allsopp RC. Stem cells, telomerase regulation and the hypoxic state. Frontiers in Bioscience. 2016;21(2):303–315. doi: 10.2741/4389
  23. Zhu Y, Liu X, Ding X, et al. Telomere, and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology. 2019;20(1):1–16. doi: 10.1007/s10522-018-9769-1
  24. Ahmad R, Haque M. Oral Health Messiers: Diabetes Mellitus Relevance. Diabet metab syndr obes. 2021;14:3001–3015. doi: 10.2147/DMSO.S318972
  25. Markowicz-Piasecka M, Sikora J, Szydłowska A, et al. Metformin – a future therapy for neurodegenerative diseases. Pharmaceutical research. 2017;34(12):2614–2627. doi: 10.1007/s11095-017-2199-y
  26. Du Y, Gao Y, Zeng B, et al. Effects of anti-aging interventions on intestinal microbiota. Gut Microbes. 2021;13(1):1994835. doi: 10.1080/19490976.2021.1994835
  27. Paltsev MA, Polyakova VO, Linkova NS, et al. Molecular and cellular mechanisms of Alzheimer’s disease. Molecular medicine. 2016;14(6):3–10. EDN: XHLYSV
  28. Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer’s disease a type 3 diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1078–1089. doi: 10.1016/j.bbadis.2016.08.018
  29. De Sousa RAL, Harmer AR, Freitas DA, et al. An update on potential links between type 2 diabetes mellitus and Alzheimer’s disease. Molecular Biology Reports. 2020;47(8):6347–6356. doi: 10.1007/s11033-020-05693-z
  30. Zhang J, Chen C, Hua S, et al. An updated meta-analysis of cohort studies: diabetes and risk of Alzheimer’s disease. Diabetes research and clinical practice. 2017;124:41–47. doi: 10.1016/j.diabres.2016.10.024
  31. Ostroumova OD, Surkova EV, Goloborodova IV, et al. Hypoglycemia and the risk of cognitive impairment and dementia in elderly and senile patients with type 2 diabetes. Diabetes. 2020;23(1):72–87. doi: 10.14341/DM10202
  32. Kim WJ, Lee SJ, Lee E, et al. Risk of Incident Dementia According to Glycemic Status and Comorbidities of Hyperglycemia: A Nationwide Population–Based Cohort Study. Diabetes care. 2022;45(1):134–141. doi: 10.2337/dc21-0957
  33. Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics, and treatment of Alzheimer’s disease. Current Neuropharmacology. 2020;18(11):1106–1125. doi: 10.2174/1570159X18666200528142429
  34. Cassano V, Leo A, Tallarico M, et al. Metabolic and cognitive effects of ranolazine in Type 2 Diabetes Mellitus: Data from an in vivo Model. Nutrients. 2020;12(2):382. doi: 10.3390/nu12020382
  35. Shcherbakova EM. Population aging and sustainable development. Demoscope Weekly. 2016;(709–710):15–30. (In Russ.) EDN: XDYGPX
  36. Moskalev АA, Guvatova Z, Lopes IDA, et al. Targeting aging mechanisms: pharmacological perspectives. Trends in Endocrinology & Metabolism. 2022;33(4):266–280. doi: 10.1016/j.tem.2022.01.007
  37. Rayson A, Boudiffa M, Naveed M, et al. Geroprotectors and Skeletal Health: Beyond the Headlines. Front Cell Dev Biol. 2022;10:682045. doi: 10.3389/fcell.2022.682045
  38. Moskalev AА, Chernyagina E, Kudryavtseva A, Shaposhnikov MV. Geroprotectors: A Unified Concept and Screening Approaches. Aging and Disease. 2017;8(3). doi: 10.14336/AD.2016.102
  39. Moskalev AА, Shaposhnikov MV, Solovev IA. Studying the geroprotective effects of inhibitors suppressing aging-associated signaling cascades in model organisms. Medical News of North Caucasus. 2017;12(3):342–7. doi: 10.14300/mnnc.2017.12090
  40. Gilmutdinova IR, Kudryashova IS, Kostormina EY, et al. Modern Approaches to Diagnostic and Correction of Aging Biomarkers. Bulletin of Rehabilitation Medicine. 2021;20(6):96–102. doi: 10.38025/2078-19
  41. Wang C, Liu C, Gao K, et al. Metformin preconditioning provide neuroprotection through enhancement of autophagy and suppression of inflammation and apoptosis after spinal cord injury. Biochem Biophys Res Commun. 2016;477(4):534–540. doi: 10.1016/j.bbrc.2016.05.148
  42. Chiang MC, Cheng YC, Chen SJ, et al. Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cell agains amyloid-betainduced mitochodrial dysfunction. Experimental Cell Research. 2016;347(2):322–31. doi: 10.1016/j.yexcr.2016.08.013
  43. Chung MM, Chen YL, Pei D, et al. The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK-dependent. Biochim Biophys Acta. 2015;1852(5):720–31. doi: 10.1016/j.bbadis.2015.01.006
  44. Benito-Cuesta I, Ordonez-Gutierrez L, Wandosell F. AMPK activation does not enhance autophagy in neurons in contrast to MTORC1 inhibition: Different impact on beta-amyloid clearance. Autophagy. 2021;17:656–671. doi: 10.1080/15548627.2020.1728095
  45. Guangli Lu, Zhen W, Jia S, et al. The effects of metformin on autophagy. Biomed Pharmacother. 2021;137:111286. doi: 10.1016/j.biopha.2021.111286
  46. Chung MM, Nicol CJ, Cheng YC, et al. Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs. Experimental Cell Research. 2017;352:75–83. doi: 10.1016/j.yexcr.2017.01.017
  47. Oliveira WH, Nunes AK, RochaFrança ME, et al. Effects of metformin on inflammation and short-term memory in streptozotocin-induced diabetic mice. Brain Research. 2016;1644:149–60. doi: 10.1016/j.brainres.2016.05.013
  48. Thies W, Bleile L. Alzheimer’s disease facts and figures. Alzheimers Dementia. 2022;18(4):700–789. doi: 10.1002/alz.12638
  49. Ashrostaghi Z, Ganji F, Sepehri H. Effect of metformin on the spatial memory in aged rats. National Journal of Physiology Pharmacy and Pharmacology. 2015;5:416–420. doi: 10.5455/njppp.2015.5.1208201564
  50. Qin Z, Zhou C, Xiao X, Guo C. Metformin attenuates sepsis-induced neuronal injury and cognitive impairment. BMC Neuroscience. 2021;22(1):78. doi: 10.1186/s12868-021-00683-8
  51. Le Douce J, Maugard M, Veran J, et al. Impairment of glycolysis–derived l–serine production in astrocytes contributes to cognitive deficits in Alzheimer’s disease. Cell metabolism. 2020;31(3):503–517. doi: 10.1016/j.cmet.2020.02.004
  52. Ruyatkina LA, Ruyatkin DS. Multidimensional effects of metformin in patients with type 2 diabetes. Diabetes mellitus. 2017;20(3):210–219. doi: 10.14341/DM2003458-64
  53. Wang CP, Lorenzo C, Habib SL, et al. Differential effects of metformin on age related comorbidities in older men with type 2 diabetes. J Diabetes Complications. 2017;31:679–686. doi: 10.1016/j.jdiacomp.2017.01.013
  54. Samaras K, Makkar S, Crawford JD, et al. Metformin Use Is Associated with Slowed Cognitive Decline and Reduced Incident Dementia in Older Adults with Type 2 Diabetes: The Sydney Memory and Ageing Study. Diabetes Care. 2020;43:2691–2701. doi: 10.2337/dc20-0892
  55. Kuan YC, Huang KW, Lin CL, et al. Effects of metformin exposure on neurodegenerative diseases in elderly patients with type 2 diabetes mellitus. Prog. Neuropsychopharmacol. Progress in Neuro-Psychopharmacology and Biological Psychiatry.2017;79:77–83. doi: 10.1016/j.pnpbp.2017.06.002
  56. Ou Z, Kong X, Sun X, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behavior and Immunity. 2018;69:351–363. doi: 10.1016/j.bbi.2017.12.009
  57. Farr SA, Roesler E, Niehoff ML, et al. Metformin Improves Learning and Memory in the SAMP8 Mouse Model of Alzheimer’s Disease. Journals of Alzheimer’s Disease. 2019;68:1699–1710. doi: 10.3233/JAD-181240
  58. Levin OS, Chimagomedova ASh, Arefieva AP. Anxiety in the elderly. Korsakov Journal of Neurology and Psychiatry. 2019;119(6):113–118. doi: 10.17116/jnevro2019119061113
  59. Gribanov AV, Dzhos YuS, Deryabina IN, et al. An aging brain: morphofunctional aspects. Korsakov Journal of Neurology and Psychiatry. 2017;117(1–2):3–7. doi: 10.17116/jnevro2017117123-7
  60. Fang W, Zhang J, Hong L, et al. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. Journal of Affective Disorders. 2020;260:302–313. doi: 10.1016/j.jad.2019.09.013
  61. Fan J, Di Li, Hong-Sheng C, et al. Metformin produces anxiolytic-like effects in rats by facilitating GABAA receptor trafficking to membrane. British Journal of Pharmacology. 2019;176:297–316. doi: 10.1111/bph.14519
  62. Owen MD, Baker BC, Scott EM, Forbes K. Interaction between Metformin, Folate and Vitamin B12 and the Potential Impact on Fetal Growth and Long-Term Metabolic Health in Diabetic Pregnancies. Int J mol sci. 2021;22(11):5759. doi: 10.3390/ijms22115759
  63. Connelly PJ, Lonergan M, Soto-Pedre E, et al. Acute kidney injury, plasma lactate concentrations and lactic acidosis in metformin users: A GoDarts study. Diabetes Obes Metab. 2017;19(11):1579–1586. doi: 10.1111/dom.12978
  64. Madsen KS, Kähler P, Kähler LKA, et al. Metformin and second-or third generation sulphonylurea combination therapy for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2019;4(4). doi: 10.1002/14651858.CD012368.pub2
  65. Mohammed I, Hollenberg MD, Ding H, Triggle CR. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front Endocrinol. 2021;12:718942. doi: 10.3389/fendo.2021.718942

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».