Historical and modern intraoperative methods for determining the viability of the anastomosed ends of the colon

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Determination of the viability of the anastomosed ends of the intestine is the most important stage in operations on the gastrointestinal tract, since their insufficient blood supply leads to formidable complications in the form of necrosis of the intestinal wall, failure of the anastomotic sutures and peritonitis. Visual methods for determining viability by peristalsis, pulsation of marginal vessels, color of the serous cover are very subjective and depend both on the experience of the surgeon and on the conditions in which operations are performed. The development of colorectal surgery is continuously associated with the study and development of methods for intraoperative determination of the viability of the anastomosed ends of the intestine. This review is devoted to various instrumental methods for determining the level of vascularization of the colon walls. The review presents data from both experimental and clinical studies, which reflect the advantages and disadvantages of these methods, allowing us to conclude that they can be used in practice. Among the most well-known methods for assessing the microcirculation of the intestinal wall during surgery, from experimental to applied, most authors single out laser Doppler fluorometry as the most modern and informative method. However, there is no consensus on its feasibility and effectiveness. Other methods for assessing microcirculation are inappropriate due to the complexity of their implementation or inefficiency. Despite this circumstance, among all the methods, perfusion fluorometry and laser fluorescein angiography compare favorably, especially the latter, since it allows to more accurately determine the state of the intestine and is rather undemanding in execution. A less accurate, but more accessible method is Doppler ultrasound, since it does not require large financial resources.

About the authors

Foat Sh. Akhmetzyanov

Kazan State Medical University; Republican Clinical Oncological Dispensary

Email: akhmetzyanov@mail.ru
ORCID iD: 0000-0002-4516-1997

M.D., D. Sci. (Med.), Prof., Head of Depart., Depart. of Oncology, Radiation Diagnostics and Radiation Therapy; Head, Surgical Clinic of Treatment and Diagnostic Center 2, Republican Clinical Oncological Dispensary

Russian Federation, Kazan, Russia; Kazan, Russia

Ramil R. Gaynanshin

Kazan State Medical University; Republican Clinical Oncological Dispensary

Email: gaynanshin90@gmail.com
ORCID iD: 0000-0001-9415-4251

PhD Stud., Depart. of Oncology, Radiation Diagnostics and Radiation Therapy; Oncologist

Russian Federation, Kazan, Russia; Kazan, Russia

Vasiliy I. Egorov

Kazan State Medical University; Republican Clinical Oncological Dispensary

Author for correspondence.
Email: drvasiliy21@gmail.com
ORCID iD: 0000-0002-6603-1390

M.D., Cand. Sci. (Med.), Assistant, Depart. of Oncology, Radiation Diagnostics and Radiation The­rapy, Kazan State Medical University; Oncologist, Oncology Department No. 11

Russian Federation, Kazan, Russia; Kazan, Russia

Natalya V. Fedotova

Kazan State Medical University

Email: realanata@mail.ru
ORCID iD: 0009-0000-7096-345X

Resident, Depart. of Oncology, Radiation Diagnostics and Radiation Therapy

Russian Federation, Kazan, Russia

References

  1. Rodin AV, Plesh-kov VG. Evaluation of the viability of the intestine during surgical treatment in the course of acute intestinal obstruction. Vestnik Smolenskoy gosudarstvennoy meditsinskoy akademii. 2016;15(1):75–82. (In Russ.)
  2. Sujatha-Bhaskar S, Jafari MD, Stamos MJ. The role of fluorescent angiography in anastomotic leaks. Surg Technol Int. 2017;30:83–88. doi: 10.1177/000313481708301011.
  3. Pommergaard HC, Achiam MP, Burcharth J, Rosenberg J. Impared blood supply in the colonic anastomosis in mice compromises healing. Int Surg. 2015;100(1):70–76. doi: 10.9738/INTSURG-D-13-00191.1.
  4. Gröne J, Koch D, Kreis ME. Impact of intraoperative microperfusion assessment with Pinpoint Perfusion Imaging on surgical management of laparoscopic low rectal and anorectal anastomoses. Colorectal Dis. 2015;17(Suppl 3):22–28. doi: 10.1111/codi.13031.
  5. Hoek VT, Buettner S, Sparreboom CL, Detering R, Menon AG, Kleinrensink GJ; Dutch ColoRectal Audit group. A preoperative prediction model for anastomotic leakage after rectal cancer resection based on 13.175 patients. Eur J Surg Oncol. 2022;48(12):2495–2501. doi: 10.1016/j.ejso.2022.06.016.
  6. Emile SH, Khan SM, Wexner SD. Impact of change in the surgical plan based on indocyanine green fluorescence angiography on the rates of colorectal anastomotic leak: a systematic review and meta-analysis. Surg Endosc. 2022;36(4):2245–2257. doi: 10.1007/s00464-021-08973-2.
  7. Pommergaard HC. Experimental evaluation of clinical colon anastomotic leakage. Dan Med J. 2014;61(3):B4821. PMID: 24814921.
  8. Saur NM, Paulson EC. Operative management of anastomotic leaks after colorectal surgery. Clin Colon Rectal Surg. 2019;32(03):190–195. doi: 10.1055/s-0038-1677025.
  9. Karliczek A, Harlaar NJ, Zeebregts CJ, Wiggers T, Baas PC, van Dam GM. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int J Colorectal Dis. 2009;24(5):569–576. doi: 10.1007/s00384-009-0658-6.
  10. Daskalopoulou D, Kankam J, Plambeck J. Intraoperative real-time fluorescence angiography with indocyanine green for evaluation of intestinal viability during surgery for an incarcerated obturator hernia: A case report. Patient Saf Surg. 2018;12:24. doi: 10.1186/s13037-018-0173-1.
  11. Young W. H2 clearance measurement of blood flow: a review of technique and polarographic principles. Stroke. 1980;11(5):552–564. doi: 10.1161/01.str.11.5.552.
  12. Metzger HP. The hydrogen gas clearance method for liver blood flow examination: inhalation or local application of hydrogen? Adv Exp Med Biol. 1989;248:41–149. doi: 10.1007/978-1-4684-5643-1_18.
  13. Barbu A, Jansson L, Sandberg M, Quach M, Palm F. The use of hydrogen gas clearance for blood flow measurements in single endogenous and transplanted pancreatic islets. Microvasc Res. 2015;97:124–129. doi: 10.1016/j.mvr.2014.10.002.
  14. Düchs R, Foitzik T. Possible pitfalls in the interpretation of microcirculatory measurements. A comparative study using intravital microscopy, spectroscopy and polarographic pO2 measurements. Eur Surg Res. 2008;40(1):47–54. doi: 10.1159/000109310.
  15. Hirano Y, Omura K, Tatsuzawa Y, Shimizu J, Kawaura Y, Watanabe G. Tissue oxygen saturation during colorectal surgery measured by near-infrared spectroscopy: pilot study to predict anastomotic complications. World J Surg. 2006;30(3):457–461. doi: 10.1007/s00268-005-0271-y.
  16. Sheridan WG, Lowndes RH, Young HL. Tissue oxygen tension as a predictor of colonic anastomotic healing. Dis Colon Rectum. 1987;30(11):867–871. doi: 10.1007/BF02555426.
  17. Jacobi CA, Zieren HU, Zieren J, Müller JM. Is tissue oxygen tension during esophagectomy a predictor of esophagogastric anastomotic healing? J Surg Res. 1998;74(2):161–164. doi: 10.1006/jsre.1997.5239. PMID: 9587355.
  18. Boersema GSA, Wu Z, Kroese LF, Vennix S, Bastiaansen-Jenniskens YM, van Neck JW, Lam KH, Kleinrensink GJ, Jeekel J, Lange JF. Hyperbaric oxygen therapy improves colorectal anastomotic healing. Int J Colorect Dis. 2016;31(5):1031–1038. doi: 10.1007/s00384-016-2573-y.
  19. Yasumura M, Mori Y, Takagi H, Yamada T, Sakamoto K, Iwata H, Hirose H. Experimental model to estimate intestibal viability using charge-coupled device microscopy. Br J Surg. 2003;90(4):460–465. doi: 10.1002/bjs.4059.
  20. Du CZ, Fan ZH, Yang YF, Yuan P, Gu J. Value of intra-operative Doppler sonographic measurements in predicting post-operative anastomotic leakage in rectal cancer: a prospective pilot study. Chin Med J. 2019;132(18):2168–2176. doi: 10.1097/CM9.0000000000000410.
  21. Babkova IV, Mishukova LB, Larichev SE. Ultrasound diagnosis of intraparietal blood flow disorders in acute small bowel obstruction using Doppler sonography. Medical visualization. 2000;(3):5–9. (In Russ.)
  22. Vardhan S, Deshpande SG, Singh A, Kumar SCA, Bisen YT, Dighe OR, Kumar C. A techniques for diagnosing anastomotic leaks intraoperatively in colorectal surgeries: A review. Cureus. 2023;15(1):e34168. doi: 10.7759/cureus.34168.
  23. Cassar M, Ismael GY, Cahill RA. Assessment of bowel vascularity and adjuncts to anastomotic healing. In: Coloproctology. Cham: Springer; 2017. р. 133–160. doi: 10.1007/978-3-319-55957-5_7.
  24. Ivanov D, Cvijanović R, Gvozdenović L. Intraoperative air testing of colorectal anastomoses. Srp Arh Celok Lek. 2011;139(5–6):333–338. doi: 10.2298/SARH1106333I.
  25. Ris F, Hompes R, Cunningham C, Lindsey I, Guy R, Jones O, George B, Cahill RA, Mortensen NJ. Near-infrared (NIR) perfusion angiography in minimally invasive colorectal surgery. Surg Endosc. 2014;28(7):2221–2226. doi: 10.1007/s00464-014-3432-y.
  26. Jafari MD, Wexner SD, Martz JE, McLemore EC, Margolin DA, Sherwinter DA, Lee SW, Senagore AJ, Phelan MJ, Stamos MJ. Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): A multi-institutional study. J Am Coll Surg. 2015;220(1):82–92. doi: 10.1016/j.jamcollsurg.
  27. Hulten L, Jodal M, Lindhagen J, Lundgren O. Colonic blood flow in cat and man as analyzed by an inert gas washout technique. Gastroenterology. 1976;70(1):36–44. doi: 10.1016/S0016-5085(76)80400-3.
  28. Hummel SJ, Delgado G, Butterfield A, Dritschilo A, Harbert J. Measurement of blood flow through surgical anastomosis using the radioactive microsphere technique. Obstet Gynecol. 1985;66(4):579–581. PMID: 4047547.
  29. Wheeless CR Jr, Smith JJ. A comparison of the flow of iodine 125 through three different intestinal anastomoses: Standard, Gambee, and stapler. Obstet Gynecol. 1983;62(4):513–518. PMID: 6193469
  30. Prinzen FW, Bassingthwaighte JB. Blood flow distributions by microsphere deposition methods. Cardiovasc Res. 2000;45(1):13–21. doi: 10.1016/s0008-6363(99)00252-7.
  31. Kochnev OS, Ageev AF. Method for assessing intestinal blood supply. Kazan medical journal. 1967;48(3):84–85. (In Russ.) doi: 10.17816/kazmj59265.
  32. Salusjärvi JM, Carpelan-Holmström MA, Louhimo JM, Kruuna O, Scheinin TM. Intraoperative colonic pulse oximetry in left-sided colorectal surgery: can it predict anastomotic leak? Int J Colorect Dis. 2018;33(3):333–336. doi: 10.1007/s00384-018-2963-4.
  33. Gray M, Marland JR, Murray AF, Argyle DJ, Potter MA. Predictive and diagnostic biomarkers of anastomotic leakage: a precision medicine approach for colorectal cancer patients. J Pers Med. 2021;11(6):471. doi: 10.3390/jpm11060471.
  34. Marland JR, Gray ME, Argyle DJ, Underwood I, Murray AF, Potter MA. Post-operative monitoring of intestinal tissue oxygenation using an implantable microfabricated oxygen sensor. Micromachines. 2021;12(7):810. doi: 10.3390/mi12070810.
  35. Delfrate R, Bricchi M, Forti P, Franceschi C. Infrared parietal colorectal flowmetry: A new application of the pulse oximeter. Is this method useful for general surgeons in preventing anastomotic leakage after colorectal resections? Open Access Surgery. 2015;8:61. doi: 10.2147/OAS.S81138.
  36. Dyess DL, Bruner BW, Donnell CA. Intraoperative evaluation of intestinal ischemia: A comparison of methods. South Med J. 1991;84(8):966–969. doi: 10.1097/00007611-199108000-00008.
  37. Kamiya K, Suzuki S, Mineta H, Konno H. Tonometer pHi monitoring of free jejunal grafts following pharyngolaryngoesophagectomy for hypopharyngeal or cervical oesophageal cancer. Dig Surg. 2007;24(3):214–220. doi: 10.1159/000102902.
  38. Milan M, Garcia-Granero E, Flor B, García-Botello S, Lledo S. Early prediction of anastomotic leak in colorectal cancer surgery by intramucosal pH. Dis Colon Rectum. 2006;49(5):595–601. doi: 10.1007/s10350-006-0504-7.
  39. Orland PJ, Cazi GA, Semmlow JL, Reddell MT, Brolin RE. Determination of small bowel viabiliry using quantitative myoelectric and color analysis. J Surg Res. 1993;55(6):581–581. doi: 10.1006/jsre.1993.1188.
  40. Brolin RE, Bibbo C, Petschenik A, Reddell MT, Semmlow JL. Comparison of ischemic and reperfusion injury in canine bowel viability assessment. J Gastrointest Surg. 1997;1(6):511–516. doi: 10.1016/S1091-255X(97)80066-2.
  41. Nishikawa K, Matsudaira H, Suzuki H, Mizuno R, Hanyuu N, Iwabuchi S, Yanaga K. Intraoperative thermal imaging in oesophageal replacement: its use in the assessment of gastric tube viability. Surg Today. 2006;36(9):802–806. doi: 10.1007/s00595-006-3260.
  42. Rosengarten MY. Experience in the diagnosis and treatment of acute intestinal obstruction. Kazanskiy meditsinskiy zhurnal. 1991;72(2):108–111. (In Russ.) doi: 10.17816/kazmj105382.
  43. Tokunaga T, Shimada M, Higashijima J, Yoshikawa K, Nishi M, Kashihara H, Yoshimoto T. Intraoperative thermal imaging for evaluating blood perfusion during laparoscopic colorectal surgery. Surg Laparosc Endosc Percutan Tech. 2021;31(3):281–284. doi: 10.1097/SLE.0000000000000893.
  44. Flower RW, Hochheimer BF. Indocyanine green dye fluorescence and infrared absorption choroidal angiography performed simultaneously with fluorescein angiography. Johns Hopkins Med J. 1976;138(2):33–42. PMID: 1249879.
  45. Iwamoto M, Ueda K, Kawamura J. A narrative review of the usefulness of indocyanine green fluorescence angiography for perfusion assessment in colorectal surgery. Cancers. 2022;14(22):5623. doi: 10.3390/cancers14225623.
  46. Wexner S, Abu-Gazala M, Boni L, Buxey K, Cahill R, Carus T, Rosenthal RJ. Use of fluorescence imaging and indocyanine green during colorectal surgery: Results of an intercontinental Delphi survey. Surgery. 2022;172(6):38–45. doi: 10.1016/j.surg.2022.04.016.
  47. Vaassen H, Wermelink B, Geelkerken B, Lips D. Fluorescence angiography for peri-operative assessment of bowel viability in patients with mesenteric ischaemia. EJVES Vascular Forum. 2022;54:53–54. doi: 10.1016/j.ejvsvf.2021.12.076.
  48. Rodríguez-Luna MR, Okamoto N, Cinelli L, Baratelli L, Ségaud S, Rodríguez-Gómez A, Gioux S. Quantification of bowel ischaemia using real-time multispectral Single Snapshot Imaging of Optical Properties (SSOP). Surg Endosc. 2022;37(3):2395–2403. doi: 10.1007/s00464-022-09764-z.
  49. Baiocchi GL, Diana M, Boni L. Indocyanine green-based fluorescence imaging in visceral and hepatobiliary and pancreatic surgery: State of the art and future directions. World J Gastroenterol. 2018;24(27):2921–2930. doi: 10.3748/wjg.v24.i27.2921.
  50. Arpaia P, Bracale U, Corcione F, Egidio B, Alessandro B, Vincenzo C, Luigi D, Roberto P, Roberto P. Assessment of blood perfusion quality in laparoscopic colo-rectal surgery by means of Machine Learning. Sci Rep. 2022;12:14682. doi: 10.1038/s41598-022-16030-8.
  51. Wallace MB, Meining A, Canto MI, Fockens P, Miehlke S, Roesch T, Lightdale CJ, Pohl H, Carr-Locke D, Löhr M, Coron E, Filoche B, Giovannini M, Moreau J, Schmidt C, Kiesslich R. The safety of intravenous fluorescein for confocal laser endomicroscopy in the gastrointestinal tract. Aliment Pharmacol Ther. 2010;31(5):548–552. doi: 10.1111/j.1365-2036.2009.04207.x.
  52. Bulkley GB, Zuidema GD, Hamilton SR, O'Mara CS, Klacsmann PG, Horn SD. Intraoperative determination of small intestinal viability following ische-mic injury: A prospective, controlled trial of two adjuvant methods (Doppler and fluorescein) compared with standart clinical judgment. Ann Surg. 1981;193(5):628–637. doi: 10.1097/00000658-198105000-00014.
  53. Vignolini G, Sessa F, Greco I. Intraoperative assessment of ureteral and graft reperfusion during robotic kidney transplantation with indocyanine green fluorescence videography: A pilot study and systematic review of the literature. Minerva Urol Nefrol. 2019;71(1):79–84. doi: 10.23736/S0393-2249.18.03278-2.
  54. Kudszus S, Roesel C, Schachtrupp A, Jörg J. Intraoperative laser fluorescence angiography in colorectal surgery: A noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg. 2010;395(8):1025–1030. DOI: 10/1007/s00423-010-0699-x.
  55. Boni L, David G, Dionigi G, Rausei S, Cassinotti E, Fingerhut A. Indocyanine green-enhanced fluorescence to assess bowel perfusion during laparoscopic colorectal resection. Surg Endosc. 2016;30(7):2736–2742. doi: 10.1007/s00464-015-4540-z.
  56. Kin C, Vo H, Welton L, Welton M. Equivocal effect of intraoperative fluorescence angiography on colorectal anastomotic leaks. Dis Colon Rectum. 2015;58(6):582–587. doi: 10.1097/DCR.0000000000000320.
  57. Kim JC, Lee JL, Yong S, Alotaibi AM, Kim J. Utility of indocyanine-green fluorescent imaging during robot-assisted sphincter-saving surgery on rectal cancer patients. Int J Med Robot. 2015;12(4):710–717. doi: 10.1002/rcs.1710.
  58. Kim JC, Lee JL, Park SH. Interpretative guidelines and possible indications for indocyanine green fluorescence imaging in robot-assisted sphincter-saving operations. Dis Colon Rectum. 2017;60(4):376–384. doi: 10.1097/DCR.0000000000000782.
  59. Mizrahi I, Abu-Gazala M, Rickles AS, Fernandez LM, Petrucci A, Wolf J, Sands DR, Wexner SD. Indocyanine green fluorescence angiography during low anterior resection for low rectal cancer: Results of a comparative cohort study. Tech Coloproctol. 2018;22(7);535–540. doi: 10.1007/s10151-018-1832-z.
  60. Ashraf SQ, Burns EM, Jani A, Altman S, Young JD, Cunningham C, Faiz O, Mortensen NJ. The economic impact of anastomotic leakage after anterior resections in English NHS hospitals: Are we adequately remunerating them? Colorectal Dis. 2013;15(4):190–198. doi: 10.1111/codi.12125.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2023 Eco-Vector





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».