Role of genes involved in the regulation of apoptosis in the pathogenesis of genital endometriosis. A literature review

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

BACKGROUND: The high prevalence, the lack of reliable data on the etiology, as well as the complexity of diagnosis and treatment of genital endometriosis indicate the urgency of the problem.

AIM: The aim of this study was to analyze and summarize scientific publications devoted to the study of single-nucleotide polymorphisms involved in apoptosis and their association with endometriosis.

MATERIALS AND METHODS: Based on keyword searches for “gene,” “SNP,” “apoptosis,” and “endometriosis,” a selection of papers published in open sources (PubMed and Google Scholar) in the period from 2010 to 2020 was performed.

RESULTS AND CONCLUSIONS: An analysis of the main and auxiliary apoptotic pathways was performed, with the protein regulators and their genes detailed in accordance with the implementation of the programmed cell death cascade in genital endometriosis. The review identified the significance of a number of proteins (TNF-á, FADD, CASP3, CASP7, CASP10) in the pathogenesis of hyperproliferative diseases. However, many apoptotic regulators (BCL2, BIK, BMF, HRK, BAD, Survivin) in genital endometriosis were found to have been understudied, which makes future research in this direction promising.

作者简介

Nelly Andreyeva

Ott Research Institute of Obstetrics, Gynecology and Reproductology

Email: nelly8352@yahoo.com
ORCID iD: 0000-0002-1928-1266
SPIN 代码: 3355-2646

MD, Junior Researcher 

俄罗斯联邦, 3, Mendeleevskaya line, Saint Petersburg, 199034

Maria Yarmolinskaya

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Saint; North-Western State Medical University named after I.I. Mechnikov

Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
SPIN 代码: 3686-3605
Scopus 作者 ID: 7801562649
Researcher ID: P-2183-2014

MD, Dr. Sci. (Med.), Professor, Professor of the Russian Academy of Sciences

俄罗斯联邦, 3, Mendeleevskaya line, Saint Petersburg, 199034; 41 Kirochnaya Str., Saint Petersburg, 191015

Tatiana Ivashchenko

Ott Research Institute of Obstetrics, Gynecology and Reproductology

编辑信件的主要联系方式.
Email: tivashchenko2011@mail.ru
ORCID iD: 0000-0002-8549-6505
Scopus 作者 ID: 7004724202

Dr. Sci. (Biol.), Professor, Leading Researcher of the Laboratory of Prenatal Diagnostics of congenial and Hereditary Diseases

俄罗斯联邦, 3, Mendeleevskaya line, Saint Petersburg, 199034

参考

  1. Selkov SA, Yarmolinskaya MI. Endometriosis as a pathology of regulatory mechanisms. Journal of obstetrics and women’s diseases. 2017;66(2). (In Russ.). doi: 10.17816/JOWD6629-13
  2. Miller JE, Ahn SH, Monsanto SP, et al. Implications of immune dysfunction on endometriosis associated infertility. Oncotarget. 2017;8(4):7138–7147. doi: 10.18632/oncotarget.12577
  3. De Conto E, Matte U, Cunha-Filho JS. BMP-6 and SMAD4 gene expression is altered in cumulus cells from women with endometriosis-associated infertility. Acta Obstet Gynecol Scand. 2021;100(5):868–875. doi: 10.1111/aogs.13931
  4. Yarmolinskaya MI, Khobets VV. The role of oxytocin in the pathogenesis of endometriosis: various aspects of the problem. Journal of obstetrics and women’s diseases. 2019;68(3):89–98. (In Russ.). doi: 10.17816/JOWD68389-98
  5. Kim JH, Han E. Endometriosis and female pelvic pain. Semin Reprod Med. 2018;36(2):143–151. doi: 10.1055/s-0038-1676103
  6. Schenk M, Kröpfl JM, Hörmann-Kröpfl M, Weiss G. Endometriosis accelerates synchronization of early embryo cell divisions but does not change morphokinetic dynamics in endometriosis patients. PLoS One. 2019;14(8):e0220529. doi: 10.1371/journal.pone.0220529
  7. Zondervan KT, Becker CM, Koga K, et al. Endometriosis. Nat Rev Dis Primers. 2018;4(1):9. doi: 10.1038/s41572-018-0008-5
  8. Wang Y, Nicholes K, Shih IM. The origin and pathogenesis of endometriosis. Annu Rev Pathol. 2020;15:71–95. doi: 10.1146/annurev-pathmechdis-012419-032654
  9. Gebel HM, Braun DP, Tambur A, et al. Spontaneous apoptosis of endometrial tissue is impaired in women with endometriosis. Fertil Steril. 1998;69(6):1042–1047. doi: 10.1016/s0015-0282(98)00073-9
  10. Dmowski WP, Gebel H, Braun DP. Decreased apoptosis and sensitivity to macrophage mediated cytolysis of endometrial cells in endometriosis. Hum Reprod Update. 1998;4(5):696–701. doi: 10.1093/humupd/4.5.696
  11. Ichim G, Tait SW. A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer. 2016;16(8):539–548. doi: 10.1038/nrc.2016.58
  12. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9(3):231–241. doi: 10.1038/nrm2312
  13. Horiuchi T, Mitoma H, Harashima S, et al. Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford). 2010;49(7):1215–1228. doi: 10.1093/rheumatology/keq031
  14. Haider S, Knöfler M. Human tumour necrosis factor: physiological and pathological roles in placenta and endometrium. Placenta. 2009;30(2):111–123. doi: 10.1016/j.placenta.2008.10.012
  15. Jarmolinskaja MI. Genital’nyj jendometrioz: vlijanie gormonal’nyh, immunologicheskih i geneticheskih faktorov na razvitie, osobennosti techenija i vybor terapii [dissertation]. St. Petersburg; 2009. (In Russ.). [cited 2021 Feb 18]. Available from: https://www.dissercat.com/content/genitalnyi-endometrioz-vliyanie-gormonalnykh-immunologicheskikh-i-geneticheskikh-faktorov-na
  16. Abutorabi R, Baradaran A, Sadat Mostafavi F, et al. Evaluation of tumor necrosis factor alpha polymorphism frequencies in endometriosis. Int J Fertil Steril. 2015;9(3):329–337. doi: 10.22074/ijfs.2015.4548
  17. Medikare V, Ali A, Ananthapur V, et al. Susceptibility risk alleles of -238G/A, -308G/A and -1031T/C promoter polymorphisms of TNF- gene to uterine leiomyomas. Recent Adv DNA Gene Seq. 2015;9(1):65–71. doi: 10.2174/2352092210999151214155858
  18. Escobar-Morreale HF, Calvo RM, Sancho J, San Millán JL. TNF-alpha and hyperandrogenism: a clinical, biochemical, and molecular genetic study. J Clin Endocrinol Metab. 2001;86(8):3761–3767. doi: 10.1210/jcem.86.8.7770
  19. Yun JH, Choi JW, Lee KJ, et al. The promoter -1031(T/C) polymorphism in tumor necrosis factor-alpha associated with polycystic ovary syndrome. Reprod Biol Endocrinol. 2011;9:131. doi: 10.1186/1477-7827-9-131
  20. Babaabasi B, Ahani A, Sadeghi F, et al. The association between TNF-alpha gene polymorphisms and endometriosis in an Iranian population. Int J Fertil Steril. 2019;13(1):6–11. doi: 10.22074/ijfs.2019.5542
  21. Zhao ZZ, Nyholt DR, Le L, et al. Genetic variation in tumour necrosis factor and lymphotoxin is not associated with endometriosis in an Australian sample. Hum Reprod. 2007;22(9):2389–2397. doi: 10.1093/humrep/dem182
  22. Saliminejad K, Memariani T, Ardekani AM, et al. Association study of the TNF- -1031T/C and VEGF +450G/C polymorphisms with susceptibility to endometriosis. Gynecol Endocrinol. 2013;29(11):974–977. doi: 10.3109/09513590.2013.824956
  23. Drakou A, Mavrogianni D, Ntzeros K, et al. Association between tumor necrosis factor- gene-1031T/C promoter polymorphism and endometriosis in a European population. Horm Mol Biol Clin Investig. 2019;40(2):90–96. doi: 10.1515/hmbci-2019-0033
  24. Teramoto M, Kitawaki J, Koshiba H, et al. Genetic contribution of tumor necrosis factor (TNF)-alpha gene promoter (-1031, -863 and -857) and TNF receptor 2 gene polymorphisms in endometriosis susceptibility. Am J Reprod Immunol. 2004;51(5):352–357. doi: 10.1111/j.1600-0897.2004.00168.x
  25. Delsouc MB, Ghersa F, Ramírez D, et al. Endometriosis progression in tumor necrosis factor receptor p55-deficient mice: Impact on oxidative/nitrosative stress and metallomic profile. J Trace Elem Med Biol. 2019;52:157–165. doi: 10.1016/j.jtemb.2018.12.013
  26. Akhavan Sales Z, Tahoori MT, Sheikhha MH, et al. Identification of a FAS/FASL haplotype associated with endometriosis in Iranian patients. Gynecol Endocrinol. 2020;36(3):261–264. doi: 10.1080/09513590.2019.1655729
  27. Xu Y, He B, Li R, et al. Association of the polymorphisms in the Fas/FasL promoter regions with cancer susceptibility: a systematic review and meta-analysis of 52 studies. PLoS One. 2014;9(3):e90090. doi: 10.1371/journal.pone.0090090
  28. Mohammadzadeh A, Pourfathollah AA, Tahoori MT, et al. Evaluation of apoptosis-related gene Fas (CD95) and FasL (CD178) polymorphisms in Iranian rheumatoid arthritis patients. Rheumatol Int. 2012;32(9):2833–2836. doi: 10.1007/s00296-011-2065-x
  29. Wang T, Lian Y. The relationship between Fas and Fas ligand gene polymorphism and preeclampsia risk. Biosci Rep. 2019;39(2):BSR20181901. doi: 10.1042/BSR20181901
  30. Karakus S, Sancakdar E, Akkar O, et al. Elevated serum CD95/FAS and HIF-1 levels, but not Tie-2 levels, may be biomarkers in patients with severe endometriosis: a preliminary report. J Minim Invasive Gynecol. 2016;23(4):573–577. doi: 10.1016/j.jmig.2016.01.025
  31. Pissetti CW, Tanaka SCSV, Hortolani ACC, Marqui ABT. Gene polymorphisms in FAS (Rs3740286 and Rs4064) are involved in endometriosis development in brazilian women, but not those in CASP8 (rs13416436 and rs2037815). Rev Bras Ginecol Obstet. 2018;40(8):450–457. doi: 10.1055/s-0038-1667183
  32. Kim H, Ku SY, Suh CS, Kim SH, et al. Association between endometriosis and polymorphisms in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), TRAIL receptor and osteoprotegerin genes and their serum levels. Arch Gynecol Obstet. 2012;286(1):147–153. doi: 10.1007/s00404-012-2263-0
  33. Wang SH, Cao Z, Wolf JM, et al. Death ligand tumor necrosis factor-related apoptosis-inducing ligand inhibits experimental autoimmune thyroiditis. Endocrinology. 2005;146(11):4721–4726. doi: 10.1210/en.2005-0627
  34. Othman ER, Hornung D, Hussein M, et al. Soluble tumor necrosis factor-alpha receptors in the serum of endometriosis patients. Eur J Obstet Gynecol Reprod Biol. 2016;200:1–5. doi: 10.1016/j.ejogrb.2016.02.025.
  35. Tummers B, Green DR. Caspase-8: regulating life and death. Immunol Rev. 2017;277(1):76–89. doi: 10.1111/imr.12541
  36. Di Nisio V, Rossi G, Di Luigi G, et al. Increased levels of proapoptotic markers in normal ovarian cortex surrounding small endometriotic cysts. Reprod Biol. 2019;19(3):225–229. doi: 10.1016/j.repbio.2019.08.002
  37. Sundqvist J, Xu H, Vodolazkaia A, et al. Replication of endometriosis-associated single-nucleotide polymorphisms from genome-wide association studies in a Caucasian population. Hum Reprod. 2013;28(3):835–839. doi: 10.1093/humrep/des457
  38. Oh JE, Kim MS, Ahn CH, et al. Mutational analysis of CASP10 gene in colon, breast, lung and hepatocellular carcinomas. Pathology. 2010;42(1):73–76. doi: 10.3109/00313020903434371
  39. Yan S, Li YZ, Zhu JW, et al. Role of CASP-10 gene polymorphisms in cancer susceptibility: a HuGE review and meta-analysis. Genet Mol Res. 2012;11(4):3998–4007. doi: 10.4238/2012.November.26.1
  40. Brentnall M, Rodriguez-Menocal L, De Guevara RL, et al. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013;14:32. doi: 10.1186/1471-2121-14-32
  41. Wei WD, Ruan F, Tu FX, et al. Expression of suppressor of cytokine signaling-3 and caspase-3 in endometriosis and their correlation. Zhonghua Bing Li Xue Za Zhi. 2013;42(8):515–518.
  42. Kaya C, Alay I, Guraslan H, et al. The role of serum caspase 3 levels in prediction of endometriosis severity. Gynecol Obstet Invest. 2018;83(6):576–585. doi: 10.1159/000489494
  43. Xu HL, Xu WH, Cai Q, et al. Polymorphisms and haplotypes in the caspase-3, caspase-7, and caspase-8 genes and risk for endometrial cancer: a population-based, case-control study in a Chinese population. Cancer Epidemiol Biomarkers Prev. 2009;18(7):2114–2122. doi: 10.1158/1055-9965.EPI-09-0152
  44. Chon J, Hong JH, Kim J, et al. Association between BH3 interacting domain death agonist (BID) gene polymorphism and ossification of the posterior longitudinal ligament in Korean population. Mol Biol Rep. 2014;41(2):895–899. doi: 10.1007/s11033-013-2933-4
  45. Csordás G, Weaver D, Hajnóczky G. Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol. 2018;28(7):523–540. doi: 10.1016/j.tcb.2018.02.009
  46. Zong WX, Lindsten T, Ross AJ, et al. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 2001;15(12):1481–1486. doi: 10.1101/gad.897601
  47. Chene G, Ouellet V, Rahimi K, et al. The ARID1A pathway in ovarian clear cell and endometrioid carcinoma, contiguous endometriosis, and benign endometriosis. Int J Gynaecol Obstet. 2015;130(1):27–30. doi: 10.1016/j.ijgo.2015.02.021
  48. Grishkina AA, Chistyakova GN, Remizova II, et al. Expression of inducer (NOXA) and inhibitor (BCL-2) of apoptosis in the thin endometrium of infertile women. Sovremennye problemy nauki i obrazovanija. 2020;(2):141–141. (In Russ.). doi: 10.17513/spno.29686
  49. Korkmaz D, Bastu E, Dural O, et al. Apoptosis through regulation of Bcl-2, Bax and Mcl-1 expressions in endometriotic cyst lesions and the endometrium of women with moderate to severe endometriosis. J Obstet Gynaecol. 2013;33(7):725–728. doi: 10.3109/01443615.2013.824416
  50. Delbandi AA, Mahmoudi M, Shervin A, et al. Evaluation of apoptosis and angiogenesis in ectopic and eutopic stromal cells of patients with endometriosis compared to non-endometriotic controls. BMC Womens Health. 2020;20(1):3. doi: 10.1186/s12905-019-0865-4
  51. Depalo R, Cavallini A, Lorusso F, et al. Apoptosis in normal ovaries of women with and without endometriosis. Reprod Biomed Online. 2009;19(6):808–815. doi: 10.1016/j.rbmo.2009.09.024
  52. Kholoussi NM, El-Nabi SE, Esmaiel NN, et al. Evaluation of Bax and Bak gene mutations and expression in breast cancer. Biomed Res Int. 2014;2014:249372. doi: 10.1155/2014/249372
  53. Panzan MQ, Mattar R, Maganhin CC, et al. Evaluation of FAS and caspase-3 in the endometrial tissue of patients with idiopathic infertility and recurrent pregnancy loss. Eur J Obstet Gynecol Reprod Biol. 2013;167(1):47–52. doi: 10.1016/j.ejogrb.2012.10.021
  54. Delbandi AA, Mahmoudi M, Shervin A, et al. Evaluation of apoptosis and angiogenesis in ectopic and eutopic stromal cells of patients with endometriosis compared to non-endometriotic controls. BMC Womens Health. 2020;20(1):3. doi: 10.1186/s12905-019-0865-4
  55. Huniadi CA, Pop OL, Antal TA, Stamatian F. The effects of ulipristal on Bax/Bcl-2, cytochrome c, Ki-67 and cyclooxygenase-2 expression in a rat model with surgically induced endometriosis. Eur J Obstet Gynecol Reprod Biol. 2013;169(2):360–365. doi: 10.1016/j.ejogrb.2013.03.022
  56. Leavy O. Reproductive immunology: Evading immunosurveillance in endometriosis. Nat Rev Immunol. 2015;15(12):729. doi: 10.1038/nri3942
  57. Zhang ZY, Xuan Y, Jin XY, et al. CASP-9 gene functional polymorphisms and cancer risk: a large-scale association study plus meta-analysis. Genet Mol Res. 2013;12(3):3070–3078. doi: 10.4238/2013.February.28.22
  58. Xu XR, Wang X, Zhang H, et al. The clinical significance of the combined detection of serum Smac, HE4 and CA125 in endometriosis-associated ovarian cancer. Cancer Biomark. 2018;21(2):471–477. doi: 10.3233/CBM-170720
  59. Lalaoui N, Vaux DL. Recent advances in understanding inhibitor of apoptosis proteins. F1000Res. 2018;7:F1000 Faculty Rev-1889. doi: 10.12688/f1000research.16439.1
  60. Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov. 2012;11(2):109–124. Corrected and republished from: Nat Rev Drug Discov. 2012;11(4):331. doi: 10.1038/nrd3627
  61. Chang CM, Wang ML, Lu KH, et al. Integrating the dysregulated inflammasome-based molecular functionome in the malignant transformation of endometriosis-associated ovarian carcinoma. Oncotarget. 2017;9(3):3704–3726. doi: 10.18632/oncotarget.23364
  62. Liu XY, Wang HJ, Xu P, et al. Expressions of livin and PTEN in cancerous tissues of ovary endometriosis. Sichuan Da Xue Xue Bao Yi Xue Ban. 2016;47(4):512–515.
  63. Uegaki T, Taniguchi F, Nakamura K, et al. Inhibitor of apoptosis proteins (IAPs) may be effective therapeutic targets for treating endometriosis. Hum Reprod. 2015;30(1):149–158. doi: 10.1093/humrep/deu288
  64. Di Nisio V, Rossi G, Di Luigi G, et al. Increased levels of proapoptotic markers in normal ovarian cortex surrounding small endometriotic cysts. Reprod Biol. 2019;19(3):225–229. doi: 10.1016/j.repbio.2019.08.002
  65. Dorien O, Waelkens E, Vanhie A, et al. The use of antibody arrays in the discovery of new plasma biomarkers for endometriosis. Reprod Sci. 2020;27(2):751–762. doi: 10.1007/s43032-019-00081-w
  66. Filipchiuk C, Laganà AS, Beteli R, et al. BIRC5/Survivin expression as a non-invasive biomarker of endometriosis. Diagnostics (Basel). 2020;10(8):533. doi: 10.3390/diagnostics10080533
  67. Acimovic M, Vidakovic S, Milic N, et al. Survivin and VEGF as novel biomarkers in diagnosis of endometriosis. J Med Biochem. 2016;35(1):63–68. doi: 10.1515/jomb-2015-0005
  68. Lamp M, Saare M, Kadastik Ü, et al. Survivin promoter polymorphisms and autoantibodies in endometriosis. J Reprod Immunol. 2012;96(1–2):95–100. doi: 10.1016/j.jri.2012.10.001
  69. Vigneswara V, Ahmed Z. The role of Caspase-2 in regulating cell fate. Cells. 2020;9(5):1259. doi: 10.3390/cells9051259
  70. Sladky VC, Villunger A. Uncovering the PIDDosome and caspase-2 as regulators of organogenesis and cellular differentiation. Cell Death Differ. 2020;27(7):2037–2047. doi: 10.1038/s41418-020-0556-6
  71. Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis – the p53 network. J Cell Sci. 2003;116(Pt 20):4077–4085. doi: 10.1242/jcs.00739
  72. Duan R, Wang Y, Lin A, et al. Expression of nm23-H1, p53, and integrin 1 in endometriosis and their clinical significance. Int J Clin Exp Pathol. 2020;13(5):1024–1029.
  73. Camargo-Kosugi CM, D’Amora P, Kleine JP, et al. TP53 gene polymorphisms at codons 11, 72, and 248 and association with endometriosis in a Brazilian population. Genet Mol Res. 2014;13(3):6503–6511. doi: 10.4238/2014.August.26.1
  74. Yan Y, Wu R, Li S, He J. Meta-analysis of association between the TP53 Arg72Pro polymorphism and risk of endometriosis based on case-control studies. Eur J Obstet Gynecol Reprod Biol. 2015;189:1–7. doi: 10.1016/j.ejogrb.2015.03.015
  75. Govatati S, Chakravarty B, Deenadayal M, et al. p53 and risk of endometriosis in Indian women. Genet Test Mol Biomarkers. 2012;16(8):865–873. doi: 10.1089/gtmb.2011.0295
  76. Gallegos-Arreola MP, Valencia-Rodríguez LE, Puebla-Pérez AM, et al. The TP53 16-bp duplication polymorphism is enriched in endometriosis patients. Gynecol Obstet Invest. 2012;73(2):118–123. doi: 10.1159/000330702
  77. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol. 2003;4(7):552–565. doi: 10.1038/nrm1150
  78. Lieberman J. Granzyme A activates another way to die. Immunol Rev. 2010;235(1):93–104. doi: 10.1111/j.0105-2896.2010.00902.x
  79. Islimye Taskin M, Guney G, Adali E, et al. Granzyme B levels and granzyme B polymorphisms in peripheral blood of patients with endometriosis: a preliminary study. J Obstet Gynaecol. 2021;41(1):94–99. doi: 10.1080/01443615.2019.1697220
  80. Ichim G, Tait SW. A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer. 2016;16(8):539–548. doi: 10.1038/nrc.2016.58

补充文件

附件文件
动作
1. JATS XML
2. Diagram of the external and internal pathways of apoptosis. Adapted from G. Ichim et al. A fate worse than death: apoptosis as an oncogenic process, 2016 [80]

下载 (445KB)

版权所有 © Andreyeva N., Yarmolinskaya M., Ivashchenko T., 2021



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».