Аnti-inflammatory effects of vitamin K on women's health

封面


如何引用文章

全文:

详细

This article presents the latest research data on the role of vitamin K in the implementation of its multiple “non-classical” extra-coagulation effects associated with the regulation of a number of physiological and pathological processes in the human body. In recent years, numerous studies have been performed on vitamin K function to better understand the effects of this micronutrient and its significance in various biological reactions. Vitamin K is well known to be a cofactor of the γ-carboxylation of a number of proteins, which is necessary for their activation and is part of the so-called vitamin K cycle. The cycle enzymes, metabolites and vitamin K-dependent proteins are identified and expressed in many cells and tissues of the human body: skin, lungs, liver, kidneys, vascular endothelium, nervous and bone tissues, reproductive (endometrium, ovaries, placenta) and immune systems. There were analyzed the main mechanisms of vitamin K action through vitamin K-dependent proteins. The results of epidemiological and experimental studies prove the association of reduced vitamin K levels with the increased risk of cardiovascular diseases, overall mortality, insulin resistance, metabolic syndrome, type 2 diabetes mellitus, progression of rheumatoid arthritis and osteoporosis. On the contrary, vitamin K increased intake has a positive effect on the immune and nervous systems, as well as on a number of other somatic pathologies, including breakdowns in the reproductive sphere. These data confirm the multifunctional role of vitamin K in various organs and systems of organism, presenting as high potential further studies in the field of determining vitamin K levels.

作者简介

Valeria Zagaynova

Saint Petersburg State University

编辑信件的主要联系方式.
Email: ZagaynovaV.Al.52@mail.ru

Clinical Resident. The Department of Obstetrics, Gynecology, and Reproductive Sciences, Medical Faculty

俄罗斯联邦, St. Petersburg

Olesya Bespalova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: shiggerra@mail.ru
ORCID iD: 0000-0002-6542-5953

MD, PhD, DSci (Medicine), Deputy Director for Research. The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Saint Petersburg, Russia

俄罗斯联邦, St. Petersburg

参考

  1. Shearer MJ, Okano T. Key pathways and regulators of vitamin K function and intermediary metabolism. Annu Rev Nutr. 2018;38(1):127-151. https://doi.org/10.1146/annurev-nutr-082117-051741.
  2. Stafford DW. The vitamin K cycle. J Thromb Haemost. 2005;3(8):1873-1878. https://doi.org/10.1111/j.1538-7836. 2005.01419.x.
  3. Fusaro M, Gallieni M, Rizzo MA, et al. Vitamin K plasma levels determination in human health. Clin Chem Lab Med. 2017;55(6):789-799. https://doi.org/10.1515/cclm-2016-0783.
  4. Suttie J. Vitamin K in health and disease. Boca Raton: CRC Press; 2009.
  5. Schwalfenberg GK. Vitamins K1 and K2: The emerging group of vitamins required for human health. J Nutr Metab. 2017;2017:1-6. https://doi.org/10.1155/2017/6254836.
  6. Kaneki M, Hosoi T, Ouchi Y, Orimo H. Pleiotropic actions of vitamin K: Protector of bone health and beyond? Nutrition. 2006;22(7-8):845-852. https://doi.org/10.1016/j.nut. 2006.05.003.
  7. Shea M, Booth S. Concepts and controversies in evaluating vitamin K status in population-based studies. Nutrients. 2016;8(1):8. https://doi.org/10.3390/nu8010008.
  8. Santorino D, Siedner M, Mwanga-Amumpaire J, et al. Prevalence and predictors of functional vitamin K insufficiency in mothers and newborns in Uganda. Nutrients. 2015;7(10):8545-8552. https://doi.org/10.3390/nu7105408.
  9. Kim M, Kim H, Sohn C. Relationship between vitamin K status, bone mineral density, and hs-CRP in young Korean women. Nutr Res Pract. 2010;4(6):507. https://doi.org/10.4162/nrp.2010.4.6.507.
  10. Theuwissen E, Magdeleyns EJ, Braam LAJLM, et al. Vitamin K status in healthy volunteers. Food Funct. 2014;5(2):229-234. https://doi.org/10.1039/c3fo60464k.
  11. Tsugawa N, Shiraki M, Suhara Y, et al. Vitamin K status of healthy Japanese women: Age-related vitamin K requirement for γ-carboxylation of osteocalcin. Am J Clin Nutr. 2006;83(2):380-386. https://doi.org/10.1093/ajcn/83.2.380.
  12. Matschiner JT, Willingham AK. Influence of sex hormones on vitamin K deficiency and epoxidation of vitamin K in the rat. J Nutr. 1974;104(6):660-665. https://doi.org/10.1093/jn/104.6.660.
  13. Nishiguchi T, Matsuyama K, Kobayashi T, Kanayama N. Des-gamma-carboxyprothrombin (PIVKA-II) levels in maternal serum throughout gestation. Semin Thromb Hemost. 2005;31(03):351-355. https://doi.org/10.1055/s-2005-872443.
  14. Gröber U, Reichrath J, Holick MF, Kisters K. Vitamin K: An old vitamin in a new perspective. Dermatoendocrinol. 2015;6(1):e968490. https://doi.org/10.4161/19381972.2014.968490.
  15. Geleijnse JM, Vermeer C, Grobbee DE, et al. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam study. J Nutr. 2004;134(11):3100-3105. https://doi.org/10.1093/jn/134.11.3100.
  16. Gast GCM, de Roos NM, Sluijs I, et al. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr Metab Cardiovasc Dis. 2009;19(7):504-510. https://doi.org/10.1016/j.numecd.2008.10.004.
  17. Hung YJ, Lee CH, Chu NF, Shieh YS. Plasma protein growth arrest-specific 6 levels are associated with altered glucose tolerance, inflammation, and endothelial dysfunction. Diabetes Care. 2010;33(8):1840-1844. https://doi.org/10.2337/dc09-1073.
  18. Silaghi C, Ilyés T, Filip V, et al. Vitamin K dependent proteins in kidney disease. Int J Mol Sci. 2019;20(7):1571. https://doi.org/10.3390/ijms20071571.
  19. Puzantian H, Akers SR, Oldland G, et al. Circulating dephospho-uncarboxylated matrix Gla-protein is associated with kidney dysfunction and arterial stiffness. Am J Hypertens. 2018;31(9):988-994. https://doi.org/10.1093/ajh/hpy079.
  20. Yanagita M. The role of the vitamin K-dependent growth factor Gas6 in glomerular pathophysiology. Curr Opin Nephrol Hypertens. 2004;13(4):465-470. https://doi.org/10.1097/ 01.mnh.0000133981.63053.e9.
  21. Ferland G. Vitamin K and the nervous system: An overview of its actions. Adv Nutr. 2012;3(2):204-212. https://doi.org/10.3945/an.111.001784.
  22. Goudarzi S, Rivera A, Butt AM, Hafizi S. Gas6 promotes oligodendrogenesis and myelination in the adult central nervous system and after lysolecithin-induced demyelination. ASN Neuro. 2016;8(5):175909141666843. https://doi.org/10.1177/1759091416668430.
  23. Beulens JWJ, van der A DL, Grobbee DE, et al. Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabetes Care. 2010;33(8):1699-1705. https://doi.org/10.2337/dc09-2302.
  24. Dam V, Dalmeijer GW, Vermeer C, et al. Association between vitamin K and the metabolic syndrome: A 10-year follow-up study in adults. J Clin Endocrinol Metab. 2015;100(6):2472-2479. https://doi.org/10.1210/jc.2014-4449.
  25. Rehman K, Akash MSH. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked? J Biomed Sci. 2016;23(1):87. https://doi.org/10.1186/s12929-016-0303-y.
  26. Dihingia A, Kalita J, Manna P. Implication of a novel Gla-containing protein, Gas6 in the pathogenesis of insulin resistance, impaired glucose homeostasis, and inflammation: A review. Diabetes Res Clin Pract. 2017;128:74-82. https://doi.org/10.1016/j.diabres.2017.03.026.
  27. Jinghe X. Vitamin K and hepatocellular carcinoma: The basic and clinic. World J Clin Cases. 2015;3(9):757. https://doi.org/10.12998/wjcc.v3.i9.757.
  28. Dasari S, Ali SM, Zheng G, et al. Vitamin K and its analogs: Potential avenues for prostate cancer management. Oncotarget. 2017;8(34). https://doi.org/10.18632/oncotarget.17997.b.
  29. Dahlberg S, Ede J, Schött U. Vitamin K and cancer. Scand J Clin Lab Invest. 2017;77(8):555-567. https://doi.org/10.1080/00365513.2017.1379090.
  30. Akbari S, Rasouli-Ghahroudi AA. Vitamin K and bone metabolism: A review of the latest evidence in preclinical studies. Biomed Res Int. 2018;2018:1-8. https://doi.org/10.1155/2018/4629383.
  31. Villa JKD, Diaz MAN, Pizziolo VR, Martino HSD. Effect of vitamin K in bone metabolism and vascular calcification: A review of mechanisms of action and evidences. Crit Rev Food Sci Nutr. 2016;57(18):3959-3970. https://doi.org/10.1080/ 10408398.2016.1211616.
  32. Yamaguchi M. Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis. ChemInform. 2007;38(14). https://doi.org/10.1002/chin.200714269.
  33. Manolagas SC. Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis*. Endocr Rev. 2000;21(2):115-137. https://doi.org/10.1210/edrv.21.2.0395.
  34. Koh J-M, Khang Y-H, Jung C-H, et al. Higher circulating hsCRP levels are associated with lower bone mineral density in healthy pre- and postmenopausal women: Evidence for a link between systemic inflammation and osteoporosis. Osteoporos Int. 2005;16(10):1263-1271. https://doi.org/10.1007/s00198-005-1840-5.
  35. Garcia de Frutos P, Viegas CSB, Costa RM, et al. Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: Implications for calcification-related chronic inflammatory diseases. Plos One. 2017;12(5):e0177829. https://doi.org/10.1371/journal.pone.0177829.
  36. Abdel-Rahman MS, Alkady EAM, Ahmed S. Menaquinone-7 as a novel pharmacological therapy in the treatment of rheumatoid arthritis: A clinical study. Eur J Pharmacol. 2015;761:273-278. https://doi.org/10.1016/j.ejphar. 2015.06.014.
  37. Okamoto H. Vitamin K and rheumatoid arthritis. IUBMB Life. 2008;60(6):355-361. https://doi.org/10.1002/iub.41.
  38. Bellido-Martín L, Fernández-Fernández L, García de Frutos P. Growth arrest-specific gene 6 (GAS6). Thromb Haemost. 2017;100(10):604-610. https://doi.org/10.1160/th08- 04-0253.
  39. Jiang HY, Wek SA, McGrath BC, et al. Phosphorylation of the α subunit of eukaryotic initiation factor 2 is required for activation of NF-κB in response to diverse cellular stresses. Mol Cell Biol. 2003;23(16):5651-5663. https://doi.org/10.1128/mcb.23.16.5651-5663.2003.
  40. Lemke G, Rothlin CV. Immunobiology of the TAM receptors. Nat Rev Immunol. 2008;8(5):327-336. https://doi.org/10.1038/nri2303.
  41. Lu Q. Homeostatic regulation of the immune system by receptor tyrosine kinases of the tyro 3 family. Science. 2001;293(5528):306-311. https://doi.org/10.1126/science. 1061663.
  42. Park I-K, Giovenzana C, Hughes TL, et al. The Axl/Gas6 pathway is required for optimal cytokine signaling during human natural killer cell development. Blood. 2009;113(11):2470-2477. https://doi.org/10.1182/blood-2008-05-157073.
  43. Peterson RA. Regulatory T-Cells: Diverse phenotypes integral to immune homeostasis and suppression. Toxicol Pathol. 2012;40(2):186-204. https://doi.org/10.1177/ 0192623311430693.
  44. Hatanaka H, Ishizawa H, Nakamura Y, et al. Effects of vitamin K3 and K5 on proliferation, cytokine production, and regulatory T cell-frequency in human peripheral-blood mononuclear cells. Life Sci. 2014;99(1-2):61-68. https://doi.org/10.1016/j.lfs.2014.01.068.
  45. Shea MK, Booth SL, Massaro JM, et al. Vitamin K and vitamin D status: Associations with inflammatory markers in the framingham offspring study. Am J Epidemiol. 2007;167(3):313-320. https://doi.org/10.1093/aje/kwm306.
  46. Ohsaki Y, Shirakawa H, Hiwatashi K, et al. Vitamin K suppresses lipopolysaccharide-induced inflammation in the rat. Biosci Biotechnol Biochem. 2014;70(4):926-932. https://doi.org/10.1271/bbb.70.926.
  47. Friedman P, Hauschka P, Shia M, Wallace J. Characteristics of the vitamin K-dependent carboxylating system in human placenta. Biochim Biophys Acta Gen Subj. 1979;583(2):261-265. https://doi.org/10.1016/0304-4165(79)90433-1.
  48. Sefid F, Ostadhosseini S, Hosseini SM, et al. Vitamin K2 improves developmental competency and cryo-tolerance of in vitro derived ovine blastocyst. Cryobiology. 2017;77:34-40. https://doi.org/10.1016/j.cryobiol.2017.06.001.
  49. Jiang HY, Lee KH, Schneider C, et al. The growth arrest specific gene (gas6) protein is expressed in abnormal embryos sired by male golden hamsters with accessory sex glands removed. Anat Embryol. 2001;203(5):343-355. https://doi.org/10.1007/s004290100159.
  50. Morelli M, Misaggi R, Di Cello A, et al. Tissue expression and serum levels of periostin during pregnancy: A new biomarker of embryo-endometrial cross talk at implantation. Eur J Obstet Gynecol Reprod Biol. 2014;175:140-144. https://doi.org/10.1016/j.ejogrb.2013.12.027.
  51. Stepan H, Richter J, Kley K, et al. Serum levels of growth arrest specific protein 6 are increased in preeclampsia. Regul Pept. 2013;182:7-11. https://doi.org/10.1016/j.regpep.2012.12.013.
  52. Eroglu M, Ozakrinar O, Turkgeld I, et al. Plasma levels of growth arrest specific protein 6 are increased in idiopathic recurrent pregnancy loss. Eur Rev Med Pharmacol Sci. 2014;18(10):1554-1558.
  53. Хечумян Л.Р., Калинина Е.А., Донников А.Е., и др. Ассоциация уровня витамина K в крови и полиморфизма генов детоксикации с исходами программ вспомогательных репродуктивных технологий // Акушерство и гинекология. – 2018. – № 11. – С. 80–85. [Khechumyan LR, Kalinina EA, Donnikov AE, et al. Association of blood vitamin K level and polymorphism of detoxification genes with the outcomes of an assisted reproductive technology program. Akush Ginekol (Mosk). 2018;(11):80-85 (In Russ.)]. https://doi.org/10.18565/aig.2018.11.80-85.
  54. Хечумян Л.Р., Калинина Е.А., Донников А.Е., и др. Роль витамин K-зависимого белка периостина в предикции эффективности программы вспомогательных репродуктивных технологий // Акушерство и гинекология. – 2017. – № 7. – С. 28–32. [Khechumyan LR, Kalinina EA, Donnikov AE, et al. Role of the vitamin K-dependent protein periostin in predicting the effectiveness of an assisted reproductive technology program. Akush Ginekol (Mosk). 2017;(7):28-32. (In Russ.)]. doi: 10.18565/aig.2017.7.28-32.
  55. Kuo F-C, Hung Y-J, Shieh Y-S, et al. The levels of plasma growth arrest-specific protein 6 is associated with insulin sensitivity and inflammation in women. Diabetes Res Clin Pract. 2014;103(2):304-309. https://doi.org/10.1016/ j.diabres.2013.12.057.
  56. Chen D, Li X, Liu X, et al. NQO2 inhibition relieves reactive oxygen species effects on mouse oocyte meiotic maturation and embryo development†. Biol Reprod. 2017;97(4):598-611. https://doi.org/10.1093/biolre/iox098.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Zagaynova V.A., Bespalova O.N., 2019

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».