Heterologous synthesis of N and M fragments of capsid protein VP2 of avian infectious bursal disease virus in yeast Pichia pastoris

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Infectious bursal disease is one of the most common and economically important viral diseases of birds. Vaccination is currently the most effective way to control IBD. Subunit vaccines contain only the immunogenic protein of the pathogen or its fragments, but do not contain other proteins, lipopolysaccharides, toxins, which avoids vaccination side effects.

AIM: The aim of the work was to obtain yeast Pichia pastoris strains that synthesize and secrete the fragments of major coat protein VP2 of the infectious bursal disease virus.

MATERIALS AND METHODS: The DNA sequences encoding the N and M fragments of VP2 protein, were cloned under the control of the AOX1 gene promoter and integrated into the genome of P. pastoris strains X-33 (mut+) and GS115 (his4).

RESULTS: The analysis of proteins secreted by the obtained strains revealed the presence of additional proteins with a molecular weights corresponding to the target proteins.

CONCLUSIONS: Thus, the obtained strains of P. pastoris – producers of N and M fragments of VP2 protein can be used for antigen production to create a subunit vaccine against avian IBD.

About the authors

Andrey M. Rumyantsev

Saint Petersburg State University

Email: rumyantsev-am@mail.ru
ORCID iD: 0000-0002-1744-3890
SPIN-code: 9335-1184
Scopus Author ID: 55370658800

Cand. Sci. (Biol.), Senior Researcher

Russian Federation, Saint Petersburg

Mikhail A. Tsygankov

Saint Petersburg State University

Email: mial.tsygankov@yandex.ru
ORCID iD: 0000-0002-2513-6655
SPIN-code: 1098-0995
Scopus Author ID: 56252740000
ResearcherId: H-4691-2013

Research engineer

Russian Federation, Saint Petersburg

Vladislav V. Veretennikov

Saint Petersburg State University

Email: vlad.veretennikov.96@mail.ru
SPIN-code: 3412-1396
Scopus Author ID: 57219380560

Junior Researcher

Russian Federation, Saint Petersburg

Elena V. Sambuk

Saint Petersburg State University

Email: esambuk@mail.ru
ORCID iD: 0000-0003-0837-0498
SPIN-code: 8281-8020
Scopus Author ID: 6603061322
ResearcherId: H-6895-2013

Dr. Sci. (Biol.), Professor

Russian Federation, Saint Petersburg

Marina V. Padkina

Saint Petersburg State University

Author for correspondence.
Email: mpadkina@mail.ru
ORCID iD: 0000-0002-4051-4837
SPIN-code: 7709-0449
Scopus Author ID: 57200427270

Dr. Sci. (Biol.), Professor

Russian Federation, Saint Petersburg

References

  1. Marangon S, Busani L. The use of vaccination in poultry production. Rev Sci Tech. 2007;26(1):265–274. doi: 10.20506/rst.26.1.1742
  2. Hon CC, Lam TT, Yip CW, et al. Phylogenetic evidence for homologous recombination within the family Birnaviridae. J Gen Virol. 2008;89(12):3156–3164. doi: 10.1099/vir.0.2008/004101-0
  3. Berg TP. Acute infectious bursal disease in poultry: a review. Avian Pathol. 2000;29(3):175–194. doi: 10.1080/03079450050045431
  4. Muller H, Mundt E, Eterradossi N, Islam MR. Current status of vaccines against infectious bursal disease. Avian Pathol. 2012;41(2):133–139. doi: 10.1080/03079457.2012.661403
  5. Rumyantsev AM, Sidorin AV, Sambuk EV, Padkina MV. Modern technologies for the production of vaccines against avian infectious diseases. Ecological genetics. 2021;19(3):241–262. (In Russ.) doi: 10.17816/ecogen71021
  6. Ellis RW. Development of combination vaccines. Vaccine. 1999;17(13–14):1635–1642. doi: 10.1016/s0264-410x(98)00424-1
  7. Azad AA, Barrett SA, Fahey KJ. The characterization and molecular cloning of the double-stranded RNA genome of an Australian strain of infectious bursal disease virus. Virology. 1985;143(1):35–44. doi: 10.1016/0042-6822(85)90094-7
  8. Jagadish MN, Staton VJ, Hudson PJ, Azad AA. Birnavirus precursor polyprotein is processed in Escherichia coli by its own virus-encoded polypeptide. J Virol. 1988;62(3):1084–1087. doi: 10.1128/JVI.62.3.1084-1087.1988
  9. Da Costa B, Chevalier C, Henry C, et al. The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2. J Virol. 2002;76(5):2393–2402. doi: 10.1128/jvi.76.5.2393-2402.2002
  10. Lee CC, Ko TP, Chou CC, et al. Crystal structure of infectious bursal disease virus VP2 subviral particle at 2.6A resolution: implications in virion assembly and immunogenicity. J Struct Biol. 2006;155(1):74–86. doi: 10.1016/j.jsb.2006.02.014
  11. Letzel T, Coulibaly F, Rey FA, et al. Molecular and structural bases for the antigenicity of VP2 of infectious bursal disease virus. J Virol. 2007;81(23):12827–12835. doi: 10.1128/JVI.01501-07
  12. Eckart MR, Bussineau CM. Quality and authenticity of heterologous proteins synthesized in yeast. Curr Opin Biotechnol. 1996;7(5):525–530. doi: 10.1016/s0958-1669(96)80056-5
  13. Berlec A, Strukelj B. Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells. J Ind Microbiol Biotechnol. 2013;40(3–4):257–274. doi: 10.1007/s10295-013-1235-0
  14. Celik E, Calık P. Production of recombinant proteins by yeast cells. Biotechnol Adv. 2012;30(5):1108–1118. doi: 10.1016/j.biotechadv.2011.09.011
  15. Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98(12):5301–5317. doi: 10.1007/s00253-014-5732-5
  16. Dzhavadov ED, Rumyantsev AM, Veretennikov VV, Tarlavin NV. The use of recombinant protein vp2 as a sub-unit vaccine against infectious bursal disease. International Bulletin of Veterinary Medicine. 2021;(3):9–14. (In Russ.) doi: 10.17238/issn2072-2419.2021.3.19
  17. Web.mit.edu [Internet]. “Smash and Grab” Yeast Genomic Prep. Metodika vydeleniya DNK, “Smash and Grab” [cited 12.10.2021]. Available from: http://web.mit.edu/biology/guarente/protocols/quickprep.html
  18. Wu S, Letchworth GJ. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques. 2004;36(1):152–154. doi: 10.2144/04361DD02
  19. Maniatis T, Frich Eh, Sehmbruk Dzh. Metody geneticheskoi inzhenerii. Molekulyarnoe klonirovanie. Moscow: Mir, 1984. 480 p. (In Russ.)
  20. Padkina MV, Parfenova LV, Gradoboeva AE, Sambuk EV. Heterologous interferons synthesis in yeast Pichia pastoris. Appl Biochem Microbiol. 2010;46:409–414. doi: 10.1134/S0003683810040083
  21. Azad AA, McKern NM, Macreadie IG, et al. Physicochemical and immunological characterization of recombinant host-protective antigen (VP2) of infectious bursal disease virus. Vaccine. 1991;9(10): 715–722. doi: 10.1016/0264-410x(91)90286-f
  22. Pradhan SN, Prince PR, Madhumathi J, et al. Protective immune responses of recombinant VP2 subunit antigen of infectious bursal disease virus in chickens. Vet Immunol Immunopathol. 2012;148(3–4): 293–301. doi: 10.1016/j.vetimm.2012.06.019
  23. Arnold M, Durairaj V, Mundt E, et al. Protective vaccination against infectious bursal disease virus with whole recombinant Kluyveromyces lactis yeast expressing the viral VP2 subunit. PLoS One. 2012;7(9): e42870. doi: 10.1371/journal.pone.0042870
  24. Pitcovski J, Gutter B, Gallili G, et al. Development and large-scale use of recombinant VP2 vaccine for the prevention of infectious bursal disease of chickens. Vaccine. 2003;21(32):4736–4743. doi: 10.1016/s0264-410x(03)00525-5
  25. Taghavian O, Spiegel H, Hauck R, et al. Protective oral vaccination against infectious bursal disease virus using the major viral antigenic protein VP2 produced in Pichia pastoris. PLoS One. 2013;8(12): e83210. doi: 10.1371/journal.pone.0083210
  26. Salehinia J, Sadeghi HMM, Abedi D, Akbari V. Improvement of solubility and refolding of an anti-human epidermal growth factor receptor 2 single-chain antibody fragment inclusion bodies. Res Pharm Sci. 2018;13(6):566–574. doi: 10.4103/1735-5362.245968
  27. Esmaili I, Mohammad Sadeghi HM, Akbari V. Effect of buffer additives on solubilization and refolding of reteplase inclusion bodies. Res Pharm Sci. 2018;13(5):413–421. doi: 10.4103/1735-5362.236834
  28. Shi R, Pan Q, Guan Y, et al. Imidazole as a catalyst for in vitro refolding of enhanced green fluorescent protein. Arch Biochem Biophys. 2007;459(1):122–128. doi: 10.1016/j.abb.2006.11.002
  29. Arakawa T, Ejima D, Tsumoto K, et al. Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects. Biophys Chem. 2007;127(1–2):1–8. doi: 10.1016/j.bpc.2006.12.007
  30. Schuchner S, Behm C, Mudrak I, Ogris E. The Myc tag monoclonal antibody 9E10 displays highly variable epitope recognition dependent on neighboring sequence context. Sci Signal. 2020;13(616): eaax9730. doi: 10.1126/scisignal.aax9730

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Schemes of the resulting plasmids. (a) Location of nucleotide and amino acid sequences corresponding to the M (208–351 a.u.) and N (18–139 a.m.) fragments of the VP2 protein of the IBD virus; b — scheme of plasmids pPICZαB/(625-1053) and pPICZαB/(52-417). Bacterial origin of replication (pUC origin), zeocin resistance gene [coding sequence — Zeo(R), bacterial promoter — EM7, yeast promoter — TEF1, transcription terminator — CYC1], expression cassette [alcohol oxidase gene promoter 1 (AOX1 promoter)] ], the sequence of the signal peptide (alpha-factor), the sequences encoding fragments of the VP2 protein of the IBD virus (M-VP2 and N-VP2), the sequences encoding the c-myc epitope and the histidine tag (6xHis), the transcription terminator of the alcohol oxidase 1 gene ( AOX1 transcription terminator)

Download (105KB)
3. Figure 2. Electropherograms of PCR products. a — PCR results: 1 — with primers to the N fragment sequence and pPICZαВ/(52-417) plasmid as a template, 3 — with primers to the M fragment sequence and pPICZαВ/(625-1053) plasmid; b — PCR results: with primers for the N fragment sequence and genomic DNA of strain N-X-33 (4), strain N-GS115 (5); with primers to the sequence of fragment M and genomic DNA of strain M-X-33 (6); strain M-GS115 (7). Tracks 2 and 8 — DNA Ladder 100+ bp marker (Evrogen, Russia)

Download (114KB)
4. Figure 3. Electropherogram of proteins of the culture medium of strain M-X-33 (a) and the results of Western blot hybridization with antibodies to the c-myc epitope (b). 1 - Culture liquid of the original strain X-33; 2 and 4, PageRuler Prestained Protein Ladder markers (Thermofisher Scientific, USA); 3 — culture liquid of strain M-X-33 synthesizing secretory fragment M VP2 (208–351 aa) with c-myc epitope and histidine label. The arrow indicates the band corresponding to the secretory fragment M of the VP2 protein.

Download (70KB)
5. Figure 4. Electrophoregram of proteins purified from the culture liquid of yeast strains that produce the N and M fragments of the VP2 protein (a) and the results of Western blot hybridization with antibodies to the c-myc epitope (b). 1 - Proteins of the culture fluid of the original strain X-33 (negative control); 2 — secretory fragment N VP2 (18–139 aa.) synthesized by strain N-X-33; 3 and 4 — M VP2 secretory fragment (208–351 aa.) synthesized by strains M-X-33 and M-GS115, respectively; 5 — PageRuler Prestained Protein Ladder marker (Thermofisher Scientific, USA). The bands corresponding to the synthesized proteins are indicated (white arrow) and the bands presumably corresponding to the dimer of the VP2 M-fragment (black arrow)

Download (100KB)
6. Figure 5. Results of Western blot hybridization with antibodies to the c-myc epitope. Purified VP2 protein M fragment (208–351 aa) in PBS buffer with 250 mM imidazole without boiling (1); with boiling (2); purified M fragment of VP2 protein in PBS buffer without boiling (4); with boiling (5); 3, 6 — PageRuler Prestained Protein Ladder marker (Thermofisher Scientific, USA). Bands corresponding to synthesized proteins (white arrow) and bands presumably corresponding to the dimer of the VP2 M-fragment (black arrow) are indicated. Separately, high-molecular protein aggregates (Ag) are indicated.

Download (92KB)

Copyright (c) 2022 ООО "Эко-Вектор"


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».