Searching for regulators that interact with BELL1 transcription factor and control the legume-rhizobial symbiosis development

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The development of nitrogen-fixing nodule, which is formed during legume-rhizobial symbiosis, requires the involvement of cell cycle regulators, phytohormones and homeodomain-containing transcription factors as well as other organogenesis processes. Along with homedomain-containing transcription factors from KNOX family, which participation in the control of nodule development has been studied recently, the role of transcription factors from BELL family in this process remains under-explored. At the same time, transcriptomic data for legumes shows an increase in the expression levels of genes encoding proteins of this family in the plant roots inoculated by Rhizobium. In this work we performed screening of сDNA library, which was generated from inoculated pea roots, using BELL1 protein in yeast two-hybrid system. As a result, we detected two interacting proteins, which are highly interesting for future examination. In the first case we discovered interaction between BELL1 and LysM-containing receptor-like kinase LYK9. Another identified regulator interacting with BELL1 became the glycine-rich protein A3, which may be involved in the regulation of defense reactions in plants and their resistance to phytopathogens. Transcriptomic analysis for pea roots has revealed high expression level of gene, which encodes this protein in the nodules, that may demonstrate its important role in symbiosis regulation.

About the authors

Alexandra Vyacheslavovna Dolgikh

All-Russia Research Institute for Agricultural Microbiology; Saint Petersburg State University

Email: sqshadol@gmail.com
ORCID iD: 0000-0003-1845-9701
Scopus Author ID: 5719038282
ResearcherId: ABC-2930-2020

engineer

Russian Federation, 3 Podbelsky chausse, Pushkin, Saint Petersburg, 196608; Saint Petersburg

Elena A. Dolgikh

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: dol2helen@yahoo.com
ORCID iD: 0000-0002-5375-0943
SPIN-code: 4453-2060
Scopus Author ID: 6603496335
ResearcherId: G-6363-2017

Dr. Sci. (Biol)

Russian Federation, 3 Podbelsky chausse, Pushkin, Saint Petersburg, 196608

References

  1. Goodstein DM, Shu S, Howson R, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2011/11/22. 2012;40(Database issue): D1178–86. doi: 10.1093/nar/gkr944
  2. Chen H, Banerjee AK, Hannapel DJ. The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J. 2004;38(2):276–84. doi: 10.1111/j.1365-313X.2004.02048.x
  3. Azarakhsh M, Kirienko AN, Zhukov VA, et al. KNOTTED1-LIKE HOMEOBOX 3: a new regulator of symbiotic nodule development. J Exp Bot. 2015;66(22):7181–95. doi: 10.1093/jxb/erv414
  4. Di Giacomo E, Sestili F, Iannelli MA, et al. Characterization of KNOX genes in Medicago truncatula. Plant Mol Biol. 2008;67(1–2): 135–50. doi: 10.1007/s11103-008-9307-7
  5. Azarakhsh M, Lebedeva MA, Lutova LA. Identification and Expression Analysis of Medicago truncatula Isopentenyl Transferase Genes (IPTs) Involved in Local and Systemic Control of Nodulation. Front Plant Sci. 2018;9:1–11. doi: 10.3389/fpls.2018.00304
  6. Schiessl K, Lilley JLS, Lee T, et al. NODULE INCEPTION Recruits the Lateral Root Developmental Program for Symbiotic Nodule Organogenesis in Medicago truncatula. Curr Biol. 2019;29(21): 3657–3668.e5. doi: 10.1016/j.cub.2019.09.005
  7. Soyano T, Shimoda Y, Kawaguchi M, Hayashi M. A shared gene drives lateral root development and root nodule symbiosis pathways in Lotus. Science. 2019;366(6468):1021–1023. doi: 10.1126/science.aax2153
  8. Faulkner C. Receptor-mediated signaling at plasmodesmata. Front Plant Sci. 2013;4:521. doi: 10.3389/fpls.2013.00521
  9. Dolgikh AV, Rudaya ES, Dolgikh EA. Identification of BELL Transcription Factors Involved in Nodule Initiation and Development in the Legumes Pisum sativum and Medicago truncatula. Plants. 2020;9(12):1808. doi: 10.3390/plants9121808
  10. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66. doi: 10.1093/nar/gkf436
  11. Yu G, Smith DK, Zhu H, et al. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8(1):28–36. doi: 10.1111/2041-210X.12628
  12. Bono J-J, Fliegmann J, Gough C, Cullimore J. Expression and function of the Medicago truncatula lysin motif receptor-like kinase (LysM-RLK) gene family in the legume–rhizobia symbiosis [Internet]. The Model Legume Medicago truncatula. 2020. p. 439–47. (Wiley Online Books). DOI: https://DOI.org/10.1002/9781119409144.ch55
  13. Gietz RD, Schiestl RH. Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007;2(1):1–4. doi: 10.1038/nprot.2007.17
  14. Beckmann BM. RNA interactome capture in yeast. Methods. 2017;118–119:82–92. doi: 10.1016/j.ymeth.2016.12.008
  15. Kreplak J, Madoui M-A, Cápal P, et al. A reference genome for pea provides insight into legume genome evolution. Nat Genet. 2019;51(9):1411–1422. doi: 10.1038/s41588-019-0480-1
  16. Leppyanen IV, Shakhnazarova VY, Shtark OY, et al. Receptor-Like Kinase LYK9 in Pisum sativum L. Is the CERK1-Like Receptor that Controls Both Plant Immunity and AM Symbiosis Development. Int J Mol Sci. 2017;19(1):8. doi: 10.3390/ijms19010008
  17. Tang H, Krishnakumar V, Bidwell S, et al. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics. 2014;15(1):312. doi: 10.1186/1471-2164-15-312
  18. Goldberg T, Hecht M, Hamp T, et al. LocTree3 prediction of localization. Nucleic Acids Res. 2014;42(W1): W350–355. doi: 10.1093/nar/gku396
  19. Alves-Carvalho S, Aubert G, Carrère S, et al. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J. 2015;84(1):1–19.
  20. Kirienko AN, Porozov YB, Malkov NV., et al. Role of a receptor-like kinase K1 in pea Rhizobium symbiosis development. Planta. 2018;248(5):1101–1120. doi: 10.1007/s00425-018-2944-4
  21. Cheval C, Samwald S, Johnston MG, et al. Chitin perception in plasmodesmata characterizes submembrane immune-signaling specificity in plants. Proc Natl Acad Sci. 2020;117(17):9621–9629. doi: 10.1073/pnas.1907799117
  22. Mangeon A, Junqueira RM, Sachetto-Martins G. Functional diversity of the plant glycine-rich proteins superfamily. Plant Signal Behav. 2010;5(2):99–104. doi: 10.4161/psb.5.2.10336
  23. Nakahara KS, Kitazawa H, Atsumi G, Choi SH, Suzuki Y, Uyeda I. Screening and analysis of genes expressed upon infection of broad bean with Clover yellow vein virus causing lethal necrosis. Virol J. 2011;8(1):355. doi: 10.1186/1743-422X-8-355

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Analysis of the interaction between the pea transcription factor BELL1 and proteins identified during the screening of the library using the yeast dihybrid system. The interaction was evaluated on selective SC medium without leucine, tryptophan, or uracil (SC-LTU). Yeast growth on a selective medium shows the interaction of proteins under study. As a control, several pairs of vectors (pEXP32/Krev1 and pEXP22/RalGDS – wild type [wt], pEXP22/RalGDS-m1 [m1 – mutant 1], and pEXP22/RalGDS-m2 [m2 – mutant 2]) proposed by the manufacturer (Thermo Fisher Scientific) was used to study strong, weak, and undetectable interactions, respectively

Download (150KB)
3. Fig. 2. Phylogenetic tree illustrating the relationship between the Psat5g112080 proteins revealed during the library screening and the LysM-RLK of the Medicago truncatula model legume

Download (439KB)
4. Fig. 3. Phylogenetic tree illustrating the relationship between the Psat4g107720 (URGI) proteins detected during the library screening and glycine-proline-rich proteins of the A3 family of M. truncatula and pea

Download (61KB)
5. Fig. 4. Graphic illustration of data on the level of expression of genes encoding glycine-proline-rich proteins of the A3 family in pea nodules (cv. Cameor) at different stages of development, based on transcriptome analysis (RNA-seq) using the P. sativum v1 genome as reference [17]. A – initiation of nodules, B – floral initiation period, and C – 10 days after flowering

Download (53KB)

Copyright (c) 2021 ООО "Эко-Вектор"


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».