Analysis of the role of tonoplast H+-ATPase in elongation growth of coleoptile cells of rice seedlings with different growth rates under normoxia and submergence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Rice coleoptiles were used to investigate the importance of V H+-ATPase in vacuolization during elongation growth under normoxic and hypoxic conditions.

AIM of the study was to find out a link between growth intensity, protein amount of subunits B and E and transcription of genes encoding those proteins.

MATERIALS AND METHODS: The investigation was carried out on two rice varieties of domestic selection, fast-growing Kuban 3 and slow-growing Amethyst. Seedlings were grown in etiolated conditions at normoxia and submergence. Western-blot analysis was employed to evaluate amount of subunits B and E in microsomal fraction. qRT-PCR was used to distinguish differences in expression of genes encoding subunits B and E of V H+-ATPase.

RESULTS: The growth under aerobic conditions was more consistent with the changes in subunits B and E of V H+-ATPase which was determined at the proteomic level, while the hypoxic growth had a stronger correspondence with changes in OsVHAs gene expression. Varietal differences were revealed only when comparing the transcription intensity, which did not affect the growth dynamics of coleoptiles. Obtained data suggested the existence of differences in the regulation of the enzyme at the transcriptional and proteomic levels during coleoptile elongation.

CONCLUSIONS: The importance of the B and E subunits of V-ATPase involvement in vacuolization during the growth process of rice coleoptiles under different oxygen level was demonstrated.

About the authors

Anastasia A. Kirpichnikova

Saint Petersburg State University

Email: nastin1972@mail.ru
ORCID iD: 0000-0001-5133-5175
SPIN-code: 9960-9527
Russian Federation, Saint Petersburg

Maria O. Biktasheva

Saint Petersburg State University

Email: togepi03@mail.ru
ORCID iD: 0009-0000-9263-7815
Russian Federation, Saint Petersburg

Vladislav V. Yemelyanov

Saint Petersburg State University

Email: bootika@mail.ru
ORCID iD: 0000-0003-2323-5235
SPIN-code: 9460-1278

Cand. Sci. (Biology), Assistant Professor

Russian Federation, Saint Petersburg

Maria F. Shishova

Saint Petersburg State University

Author for correspondence.
Email: mshishova@mail.ru
ORCID iD: 0000-0003-3657-2986
SPIN-code: 7842-7611

Dr. Sci. (Biology), Professor

Russian Federation, Saint Petersburg

References

  1. Voesenek LACJ, Bailey-Serres J. Flood adaptive traits and processes: An overview. New Phytol. 2015;206(1):57–73. doi: 10.1111/nph.13209
  2. Bailey-Serres J, Lee SC, Brinton E. Waterproofing crops: Effective flooding survival strategies. Plant Physiol. 2012;160(4):1698–1709. doi: 10.1104/pp.112.208173
  3. Ismail AM, Ella ES, Vergara GV, Mackill DJ. Mechanisms associated with tolerance to submergence during germination and early seedling growth in rice (Oryza sativa). Ann Bot. 2009;103(2):197–209. doi: 10.1093/aob/mcn211
  4. Su X, Wu H, Xiang J, et al. Evaluation of submergence tolerance of different rice genotypes at seedling emergence stage under water direct seeding. OALibJ. 2022;9(5):e8706. doi: 10.4236/oalib.1108706
  5. Bogdanova EM, Bertova AD, Kirpichnikova AA, et al. Growth and viability of coleoptiles under oxygen deficiency in Oryza sativa L. From the collection of the federal rice research center. Agricultural Biology. 2023;58(3):538–553. doi: 10.15389/agrobiology.2023.3.538rus EDN: XOZZKM
  6. Kirpichnikova AA, Kudoyarova GR, Yemelyanov VV, Shishova MF. The peculiarities of cell elongation growth of cereal coleoptiles under normal and flooding conditions. Ecological genetics. 2023;21(4): 401–417. doi: 10.17816/ecogen623901 EDN: QWDPWQ
  7. O’Sullivan PA, Weiss GM, Friesen D. Tolerance of spring wheat (Triticum aestivum L.) to trifluralin deep-incorporated in the autumn or spring. Weed Res. 1985;25(4):275–280. doi: 10.1111/j.1365-3180.1985.tb00645.x
  8. Brown PR, Singleton GR, Tann CR, Mock I. Increasing sowing depth to reduce mouse damage to winter crops. Crop Prot. 2003;22(4):653–660. doi: 10.1016/S0261-2194(03)00006-1
  9. Rebetzke GJ, Zheng B, Chapman SC. Do wheat breeders have suitable genetic variation to overcome short coleoptiles and poor establishment in the warmer soils of future climates? Funct Plant Biol. 2016;43(10):961–972. doi: 10.1071/FP15362
  10. Kordan HA. Patterns of shoot and root growth in rice seedlings germinating under water. J Appl Ecol. 1974;11(2):685–690. doi: 10.2307/2402218
  11. Shiono K, Koshide A, Iwasaki K, et al. Imaging the snorkel effect during submerged germination in rice: Oxygen supply via the coleoptile triggers seminal root emergence underwater. Front Plant Sci. 2022;13:946776. doi: 10.3389/fpls.2022.946776
  12. Arsuffi G, Braybrook SA. Acid growth: an ongoing trip. J Exp Bot. 2018;69(2):137–146. doi: 10.1093/jxb/erx390
  13. Kirpichnikova А, Chen Т, Teplyakova S, Shishova M. Proton pump and plant cell elongation. Biol Commun. 2018;63(1):32–42. doi: 10.21638/spbu03.2018.105
  14. Merzendorfer H, Graf R, Huss M, et al. Regulation of proton translocating V-ATPases. J Exp Biol. 1997;200(2):225–235. doi: 10.1242/jeb.200.2.225
  15. Dettmer J, Hong-Hermesdorf A, Stierhof Y-D, Schumacher K. Vacuolar H+-ATPase activity is regulated for endocytic and secretory trafficking in Arabidopsis. Plant Cell. 2006;18(3):715–730. doi: 10.1105/tpc.105.037978
  16. Seidel T. The plant V-ATPase. Front Plant Sci. 2022;13:931777. doi: 10.3389/fpls.2022.931777
  17. Kirpichnikova АА, Chen Т, Romanyuk DА, et al. Peculiar features of plant cell vacuolar H+-ATPase regulation. Biological Communications. 2016;(2):149–160. doi: 10.21638/11701/spbu03.2016.212 EDN: WIQTGD
  18. Yemelyanov VV, Lastochkin VV, Chirkova TV, et al. Indoleacetic acid levels in wheat and rice seedlings under oxygen deficiency and subsequent reoxygenation. Biomolecules. 2020;10(2):276. doi: 10.3390/biom10020276
  19. Shishova MF, Tankelyun OV, Rudashevskaya EL, et al. Alteration of transport activity of proton pumps in coleoptile cells during early development stages of maize seedlings. Russian Journal of Developmental Biology. 2012;43(6):413–424. EDN: PDDSEV
  20. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–683. doi: 10.1038/227680a0
  21. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254. doi: 10.1016/0003-2697(76)90527-3
  22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262
  23. Schumacher K, Krebs M. The V-ATPase: Small cargo, large effects. Curr Opin Plant Biol. 2010;13(6):724–730. doi: 10.1016/j.pbi.2010.07.003
  24. Wang C, Xiang Y, Qian D. Current progress in plant V-ATPase: From biochemical properties to physiological functions. J Plant Physiol. 2021;266:153525. doi: 10.1016/j.jplph.2021.153525
  25. Raghavendra AS, Ye W, Kinoshita T. Editorial: pH as a signal and secondary messenger in plant cells. Front Plant Science. 2023;14:1148689. doi: 10.3389/fpls.2023.1148689
  26. Felle HH. pH: Signal and messenger in plant cells. Plant Biol. 2001;3(6):577–591. doi: 10.1055/s-2001-19372
  27. Felle HH. pH regulation in anoxic plants. Ann Bot. 2005;96(4): 519–532. doi: 10.1093/aob/mci207
  28. Drew MC. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:223–250. doi: 10.1146/annurev.arplant.48.1.223
  29. Chirkova T, Yemelyanov V. The study of plant adaptation to oxygen deficiency in Saint Petersburg University. Biol Commun. 2018;63(1):17–31. doi: 10.21638/spbu03.2018.104
  30. Kulichikhin KY, Aitio O, Chirkova TV, Fagerstedt KV. Effect of oxygen concentration on intracellular pH, glucose-6-phosphate and NTP content in rice (Oryza sativa) and wheat (Triticum aestivum) root tips: In vivo 31P-NMR study. Physiol Plant. 2007;129(3):507–518. doi: 10.1111/j.1399-3054.2006.00819.x
  31. Yemelyanov VV, Chirkova TV, Lindberg SM, Shishova MF. Potassium efflux and cytosol acidification as primary anoxia-induced events in wheat and rice seedlings. Plants. 2020;9(9):1216. doi: 10.3390/plants9091216
  32. Greenway H, Kulichikhin KY, Cawthray GR, Colmer TD. pH regulation in anoxic rice coleoptiles at pH 3.5: Biochemical pH-stats and net H+ influx in the absence and presence of NOFormula. J Exp Bot. 2012;63(5):1969–1983. doi: 10.1093/jxb/err395
  33. Narsai R, Secco D, Schultz MD, et al. Dynamic and rapid changes in the transcriptome and epigenome during germination and in developing rice (Oryza sativa) coleoptiles under anoxia and re-oxygenation. Plant J. 2017;89(4):805–824. doi: 10.1111/tpj.13418
  34. Nghi KN, Tondelli A, Valè G, et al. Dissection of coleoptile elongation in japonica rice under submergence through integrated genome-wide association mapping and transcriptional analyses. Plant Cell Environ. 2019;42(6):1832–1846. doi: 10.1111/pce.13540
  35. Pucciariello C. Molecular mechanisms supporting rice germination and coleoptile elongation under low oxygen. Plants. 2020;9(8):1037. doi: 10.3390/plants9081037
  36. Gruber G, Wieczorek H, Harvey WR, Muller V. Structure-function relationship of A-, F- and V-ATPases. J Exp Biol. 2001;204(15): 2597–2605. doi: 10.1242/jeb.204.15.2597
  37. Sze H, Schumacher K, Muller ML, et al. A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H+-ATPase. Trends Plant Sci. 2002;7(4):157–161. doi: 10.1016/s1360-1385(02)02240-9
  38. Dettmer J, Schubert D, Calvo-Weimar O, et al. Essential role of the V-ATPase in male gametophyte development. Plant J. 2005;41(1):117–124. doi: 10.1111/j.1365-313X.2004.02282.x
  39. Dettmer J, Liu T-Y, Schumacher K. Functional analysis of Arabidopsis V-ATPase subunit VHA-E isoforms. Eur J Cell Biol. 2010;89(2–3): 152–156. doi: 10.1016/j.ejcb.2009.11.008
  40. Chen S-H, Bubb MR, Yarmola EG, et al. Vacuolar H+-ATPase binding to microfilaments: regulation in response to phosphatidylinositol 3-kinase activity and detailed characterization of the actin-binding site in subunit B. J Biol Chem. 2004;279(9):7988–7998. doi: 10.1074/jbc.M305351200
  41. Lu M, Ammar D, Ives H, et al. Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump. J Biol Chem. 2007;282(34):24495–24503. doi: 10.1074/jbc.M702598200
  42. Wang L, He X, Zhao Y, et al. Wheat vacuolar H+-ATPase subunit B cloning and its involvement in salt tolerance. Planta. 2011;234(1):1–7. doi: 10.1007/s00425-011-1383-2
  43. Hanitzsch M, Schnitzer D, Seidel T, et al. Transcript level regulation of the vacuolar H+-ATPase subunit isoforms VHA-А, VHA-E and VHA-G in Arabidopsis thaliana. Mol Membr Biol. 2007;24 (5–6):507–518. doi: 10.1080/09687680701447393
  44. Löw R, Rockel B, Kirsch M, et al. Early salt stress effects on the differential expression of vacuolar H+-ATPase genes in roots and leaves of Mesembryanthemum crystallinum. Plant Physiol. 1996;110(1):259–265. doi: 10.1104/pp.110.1.259
  45. Golldack D, Dietz K-J. Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol. 2001;125(4):1643–1654. doi: 10.1104/pp.125.4.1643

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig 1. The growth of rice seedlings coleoptiles of two varieties (fast-growing variety Kuban 3; slow-growing variety Amethyst) under normoxia and hypoxia. Values with different letters (a–d) are significantly different (Tukey’s test, p <0.05).

Download (177KB)
3. Fig 2. Alteration in the content of proteins of B and E subunits of H+-ATPase tonoplast in the microsomal fraction of coleoptile cells of rice seedlings of two varieties (fast-growing variety Kuban 3; slow-growing variety Amethyst) under normoxia and hypoxia: a, western blot hybridization of microsomal fraction protein samples with antibodies against B and E subunits. 35 and 55 kDa, molecular weight markers; nor., normoxia, hyp., hypoxia; Scanned images of typical blots; b, relative change in protein content. Values with different letters (a–d) are significantly different (Tukey’s test, p <0.05).

Download (428KB)
4. Fig 3. Changes in the relative level of accumulation of OsVHA-B1, OsVHA-B2, OsVHA-E1, and OsVHA-E2 gene transcripts in coleoptiles of rice seedlings of two varieties (fast-growing variety Kuban 3; slow-growing variety Amethyst) under normoxia and hypoxia conditions. Values with different letters (a–d) are significantly different (Tukey’s test, p <0.05).

Download (487KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».