Senescence metabolomics of Nicotiana tabacum L. VBI-0 heterotrophic suspension cultures
- Authors: Puzanskiy R.K.1,2, Kirpichnikova A.A.2, Shavarda A.L.1,2, Yemelyanov V.V.2, Shishova M.F.2
-
Affiliations:
- Komarov Botanical Institute of the Russian Academy of Sciences
- Saint Petersburg State University
- Issue: Vol 22, No 2 (2024)
- Pages: 161-173
- Section: Genetic basis of ecosystems evolution
- URL: https://bakhtiniada.ru/ecolgenet/article/view/262686
- DOI: https://doi.org/10.17816/ecogen624132
- ID: 262686
Cite item
Abstract
BACKGROUND: Heterotrophic cell cultures are widely used as a model in plant biology. During a culture cycle the composition of the medium changes: the sucrose and other substrates are depleted, metabolism products are accumulated and the density increases. Finally, arrest of a growth is followed by cell death in a short time. These processes are accompanied with physiological alterations, corresponding to senescence.
AIM: To resolve metabolic features of tobacco cells in growing and stationary senescent suspension cultures VBI-0.
MATERIALS AND METHODS: Nicotiana tabacum VBI-0 cells were cultured in suspension MS medium supplied with 3% sucrose. Cells were sampled at 7th day, during intensive growth, and at 28th day, when the culture was in the stationary phase. The GC-MS method was used to profile the metabolites.
RESULTS: Sucrose depletion in media caused starvation of heterotrophic tobacco cell culture and was associated with a decrease in the accumulation of free amino acids. At the same time, the level of pentoses and complex sugars, including sucrose, increased, while the levels of glucose and fructose were not changed significantly and levels of hexose phosphates decreased. During culture senescence cells showed higher levels of accumulation of malate, pyruvate and some other carboxylates.
CONCLUSIONS: The metabolomic data indicate that culture senescence was associated with a drop in amino acids metabolism, a decrease in the activity of the upper part of glycolysis, and the accumulation of complex sugars, pentoses and carboxylates.
Full Text
##article.viewOnOriginalSite##About the authors
Roman K. Puzanskiy
Komarov Botanical Institute of the Russian Academy of Sciences; Saint Petersburg State University
Email: puzansky@yandex.ru
ORCID iD: 0000-0002-5862-2676
SPIN-code: 6399-2016
Cand. Sci. (Biology)
Russian Federation, Saint Petersburg; Saint PetersburgAnastasiia A. Kirpichnikova
Saint Petersburg State University
Email: nastin1972@mail.ru
ORCID iD: 0000-0001-5133-5175
SPIN-code: 9960-9527
Russian Federation, Saint Petersburg
Alexey L. Shavarda
Komarov Botanical Institute of the Russian Academy of Sciences; Saint Petersburg State University
Email: stachyopsis@gmail.com
ORCID iD: 0000-0003-1778-2814
SPIN-code: 5637-5122
Cand. Sci. (Bioligy)
Russian Federation, Saint Petersburg; Saint PetersburgVladislav V. Yemelyanov
Saint Petersburg State University
Email: bootika@mail.ru
ORCID iD: 0000-0003-2323-5235
SPIN-code: 9460-1278
Cand. Sci. (Bioligy), Associate Professor
Russian Federation, Saint PetersburgMaria F. Shishova
Saint Petersburg State University
Author for correspondence.
Email: mshishova@mail.ru
ORCID iD: 0000-0003-3657-2986
SPIN-code: 7842-7611
https://bio.spbu.ru/staff/id200_mfsh.php
Dr. Sci. (Biology), Professor
Russian Federation, Saint PetersburgReferences
- Imseng N, Schillberg S, Schürch C, et al. Suspension culture of plant cells under heterotrophic conditions. In: Meyer H, Schmidhalter DR, editors. Industrial scale suspension culture of living cells. 1st edition. Wiley, 2014. P. 224–258. doi: 10.1002/9783527683321.ch07
- Loyola-Vargas VM, Vázquez-Flota F. An introduction to plant cell culture: back to the future. In: Loyola-Vargas VM, Vázquez-Flota F, editors. Plant Cell Culture Protocols. Methods in Molecular Biology™. Vol. 318. Humana Press, 2005. P. 3–8. doi: 10.1385/1-59259-959-1:003
- Mhlongo MI, Steenkamp PA, Piater LA, et al. Profiling of altered metabolomic states in Nicotiana tabacum cells induced by priming agents. Front Plant Sci. 2016;7:1527. doi: 10.3389/fpls.2016.01527
- Kariya K, Tsuchiya Y, Sasaki T, Yamamoto Y. Aluminium-induced cell death requires upregulation of NtVPE1 gene coding vacuolar processing enzyme in tobacco (Nicotiana tabacum L.). J Inorg Biochem. 2018;181:152–161. doi: 10.1016/j.jinorgbio.2017.09.008
- Bapat VA, Kavi Kishor PB, Jalaja N, et al. Plant cell cultures: Biofactories for the production of bioactive compounds. Agronomy. 2023;13(3):858. doi: 10.3390/agronomy13030858
- Zagorskaya AA, Deineko EV. Suspension-cultured plant cells as a platform for obtaining recombinant proteins. Russian Journal Plant Physiology. 2017;64(6):795–807. doi: 10.1134/S102144371705017X
- Roitsch T, Sinha AK. Application of photoautotrophic suspension cultures in plant science. Photosynt. 2002;40(4):481–492. doi: 10.1023/A:1024332430494
- Schenk RU, Hildebrandt AC. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot. 1972;50(1):199–204. doi: 10.1139/b72-026
- Dominguez PG, Niittylä T. Mobile forms of carbon in trees: metabolism and transport. Tree Physiol. 2022;42(3):458–487. doi: 10.1093/treephys/tpab123
- Ruan YL. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol. 2014;65:33–67. doi: 10.1146/annurev-arplant-050213-040251
- Contento AL, Kim S-J, Bassham DC. Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol. 2004;135(4):2330–2347. doi: 10.1104/pp.104.044362
- Journet EP, Bligny R, Douce R. Biochemical changes during sucrose deprivation in higher plant cells. J Biol Chem. 1986;261(7): 3193–3199. doi: 10.1016/S0021-9258(17)35767-8
- Wang H-J, Wan A-R, Hsu C–M, et al. Transcriptomic adaptations in rice suspension cells under sucrose starvation. Plant Mol Biol. 2007;63(4):441–463. doi: 10.1007/s11103-006-9100-4
- Gout E, Bligny R, Douce R, et al. Early response of plant cell to carbon deprivation: in vivo 31P-NMR spectroscopy shows a quasi-instantaneous disruption on cytosolic sugars, phosphorylated intermediates of energy metabolism, phosphate partitioning, and intracellular pHs. New Phytol. 2011;189(1):135–147. doi: 10.1111/j.1469–8137.2010.03449.x
- Roby C, Martin J-B, Bligny R, Douce R. Biochemical changes during sucrose deprivation in higher plant cells. Phosphorus-31 nuclear magnetic resonance studies. J Biol Chem. 1987;262(11):5000–5007. doi: 10.1016/S0021-9258(18)61145-7
- Inoue Y, Moriyasu Y. Degradation of membrane phospholipids in plant cells cultured in sucrose-free medium. Autophagy. 2006;2(3):244–246. doi: 10.4161/auto.2745
- Kim SW, Koo BC, Kim J, Liu JR. Metabolic discrimination of sucrose starvation from Arabidopsis cell suspension by 1H NMR based metabolomics. Biotechnol Bioprocess Eng. 2007;12(6):653–661. doi: 10.1007/BF02931082
- Binder S. Branched-chain amino acid metabolism in Arabidopsis thaliana. The Arabidopsis Book. 2010;2010(8): e0137. doi: 10.1199/tab.0137
- Morkunas I, Borek S, Formela M, Ratajczak L. Plant responses to sugar starvation. In: Chang CF, editor. Carbohydrates — comprehensive studies on glycobiology and glycotechnology. InTech, 2012. doi: 10.5772/51569
- Tsuchiya Y, Nakamura T, Izumi Y, et al. Physiological role of aerobic fermentation constitutively expressed in an aluminum-tolerant cell line of tobacco (Nicotiana tabacum). Plant Cell Physiol. 2021;62(9):1460–1477. doi: 10.1093/pcp/pcab098
- Rontein D, Dieuaide-Noubhani M, Dufourc EJ, et al. The metabolic architecture of plant cells. J Biol Chem. 2002;277(46):43948–43960. doi: 10.1074/jbc.M206366200
- Peč J, Flores-Sanchez IJ, Choi YH, Verpoorte R. Metabolic analysis of elicited cell suspension cultures of Cannabis sativa L. by 1H-NMR spectroscopy. Biotechnol Lett. 2010;32(7):935–941. doi: 10.1007/s10529-010-0225-9
- Toyooka K, Sato M, Wakazaki M, Matsuoka K. Morphological and quantitative changes in mitochondria, plastids, and peroxisomes during the log-to-stationary transition of the growth phase in cultured tobacco BY-2 cells. Plant Signal Behav. 2016;11(3): e1149669. doi: 10.1080/15592324.2016.1149669
- Toyooka K, Sato M, Kutsuna N, et al. Wide-range high-resolution transmission electron microscopy reveals morphological and distributional changes of endomembrane compartments during log to stationary transition of growth phase in tobacco BY-2 cells. Plant Cell Physiol. 2014;55(9):1544–1555. doi: 10.1093/pcp/pcu084
- Voitsekhovskaja OV, Schiermeyer A, Reumann S. Plant peroxisomes are degraded by starvation-induced and constitutive autophagy in tobacco BY-2 suspension-cultured cells. Front Plant Sci. 2014;5:629. doi: 10.3389/fpls.2014.00629
- Zhao Z, Zhang J-W, Lu S-H, et al. Transcriptome divergence between developmental senescence and premature senescence in Nicotiana tabacum L. Sci Rep. 2020;10(1):20556. doi: 10.1038/s41598-020-77395-2
- Buchanan-Wollaston V, Page T, Harrison E, et al. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 2005;42(4):567–585. doi: 10.1111/j.1365–313X.2005.02399.x
- Noor E, Eden E, Milo R, Alon U. Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol Cell. 2010;39(5):809–820. doi: 10.1016/j.molcel.2010.08.031
- Zakhartsev M, Medvedeva I, Orlov Y, et al. Metabolic model of central carbon and energy metabolisms of growing Arabidopsis thaliana in relation to sucrose translocation. BMC Plant Biol. 2016;16(1):262. doi: 10.1186/s12870-016-0868-3
- Fiehn O. Metabolomics by Gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Curr Prot Molecul Biol. 2016;114(1):30.4.1–30.4.32. doi: 10.1002/0471142727.mb3004s114
- Zažímalová E, Petrášek J, Morris DA. The dynamics of auxin transport in tobacco cells. Bulg J Plant Physiol. 2003;(S):207–224.
- Campanoni P, Blasius B, Nick P. Auxin transport synchronizes the pattern of cell division in a tobacco cell line. Plant Physiol. 2003;133(3):1251–1260. doi: 10.1104/pp.103.027953
- Zažimalová E, Opatrný Z, Březinová A, Eder J. The effect of auxin starvation on the growth of auxin-dependent tobacco cell culture: dynamics of auxin-binding activity and endogenous free IAA content. J Exp Bot. 1995;46(9):1205–1213. doi: 10.1093/jxb/46.9.1205
- Johnsen LG, Skou PB, Khakimov B, Bro R. Gas chromatography — mass spectrometry data processing made easy. J Chromatogr A. 2017;1503:57–64. doi: 10.1016/j.chroma.2017.04.052
- Hummel J, Selbig J, Walther D, Kopka J. The Golm Metabolome Database: a database for GC–MS based metabolite profiling. In: Nielsen J, Jewett MC, editors. Metabolomics. Topics in Current Genetics. Vol. 18. Berlin, Heidelberg: Springer, 2007. P. 75–95. doi: 10.1007/4735_2007_0229
- Hastie T, Tibshirani R, Narasimhan B, Chu G. impute: impute: Imputation for microarray data. Bioconductor. 2023; R package version 1.76.0. doi: 10.18129/B9.bioc.impute
- Stacklies W, Redestig H, Scholz M, et al. pcaMethods — a bioconductor package providing PCA methods for incomplete data. Bioinformatics. 2007;23(9):1164–1167. doi: 10.1093/bioinformatics/btm069
- Thévenot EA, Roux A, Xu Y, et al. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res. 2015;14(8):3322–3335. doi: 10.1021/acs.jproteome.5b00354
- Korotkevich G, Sukhov V, Budin N, et al. Fast gene set enrichment analysis. BioRxiv. 2021;60012. doi: 10.1101/060012
- Kanehisa M, Furumichi M, Sato Y, et al. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–D592. doi: 10.1093/nar/gkac963
- Tenenbaum D, Maintainer B. KEGGREST: Client-side REST access to the Kyoto Encyclopedia of genes and genomes (KEGG). Bioconductor. 2022; R package version 1.36.2. doi: 10.18129/B9.bioc.KEGGREST
- Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303
- Yemelyanov VV, Puzanskiy RK, Burlakovskiy MS, et al. Metabolic profiling of transgenic tobacco plants synthesizing bovine interferon-gamma. In: Zhan X, editor. Metabolomics — methodology and applications in medical sciences and life sciences. IntechOpen, 2021. doi: 10.5772/intechopen.96862
- Li D, Heiling S, Baldwin IT, Gaquerel E. Illuminating a plant’s tissue-specific metabolic diversity using computational metabolomics and information theory. PNAS USA. 2016;113(47): E7610–E7618. doi: 10.1073/pnas.1610218113
- Bartnik M, Facey PC. Glycosides. In: Badal S, Delgoda R, editors. Pharmacognosy. Elsevier, 2017. P. 101–161. doi: 10.1016/B978-0-12-802104-0.00008-1
- Tugizimana F, Steenkamp PA, Piater LA, Dubery IA. Multi-platform metabolomic analyses of ergosterol-induced dynamic changes in Nicotiana tabacum cells. PLoS ONE. 2014;9(1):e87846. doi: 10.1371/journal.pone.0087846
- Petrova NV, Sazanova KV, Medvedeva NA, Shavarda AL. Features of metabolomic profiles in different stages of ontogenesis in Prunella vulgaris (Lamiaceae) grown in a climate chamber. Russian Journal Bioorganic Chemistry. 2019;45(7):906–912. doi: 10.1134/S1068162019070100
- Yurkov AP, Puzanskiy RK, Avdeeva GS, et al. Mycorrhiza-induced alterations in metabolome of Medicago lupulina leaves during symbiosis development. Plants. 2021;10(11):2506. doi: 10.3390/plants10112506
- Liu Y, Li M, Xu J, et al. Physiological and metabolomics analyses of young and old leaves from wild and cultivated soybean seedlings under low-nitrogen conditions. BMC Plant Biol. 2019;19(1):389. doi: 10.1186/s12870-019-2005-6
- Shtark OY, Puzanskiy RK, Avdeeva GS, et al. Metabolic alterations in pea leaves during arbuscular mycorrhiza development. PeerJ. 2019;7:e7495. doi: 10.7717/peerj.7495
- Smith EN, Ratcliffe RG, Kruger NJ. Isotopically non-stationary metabolic flux analysis of heterotrophic Arabidopsis thaliana cell cultures. Front Plant Sci. 2023;13:1049559. doi: 10.3389/fpls.2022.1049559
- Shameer S, Vallarino JG, Fernie AR, et al. Flux balance analysis of metabolism during growth by osmotic cell expansion and its application to tomato fruits. Plant J. 2020;103(1):68–82. doi: 10.1111/tpj.14707
- Shameer S, Vallarino JG, Fernie AR, et al. Predicting metabolism during growth by osmotic cell expansion. BiolRxiv. 2019;731232. doi: 10.1101/731232
- Li W, Zhang H, Li X, et al. Intergrative metabolomic and transcriptomic analyses unveil nutrient remobilization events in leaf senescence of tobacco. Sci Rep. 2017;7(1):12126. doi: 10.1038/s41598-017-11615-0
- Tohge T, Ramos MS, Nunes-Nesi A, et al. Toward the storage metabolome: Profiling the barley vacuole. Plant Physiol. 2011;157(3):1469–1482. doi: 10.1104/pp.111.185710
- Ohnishi M, Anegawa A, Sugiyama Y, et al. Molecular components of Arabidopsis intact vacuoles clarified with metabolomic and proteomic analyses. Plant Cell Physiol. 2018;59(7):1353–1362. doi: 10.1093/pcp/pcy069
- Beauvoit BP, Colombié S, Monier A, et al. Model-assisted analysis of sugar metabolism throughout tomato fruit development reveals enzyme and carrier properties in relation to vacuole expansion. Plant Cell. 2014;26(8):3224–3242. doi: 10.1105/tpc.114.127761
Supplementary files
