Somatic mutagenesis of mitochondrial cytochrome b gene from hippocampus of Wistar rats

Cover Page

Cite item

Full Text

Abstract

One of the most interesting findings in Systems biology is the discovery of negative correlation between gene expression levels and evolutionary rates of genes. Biological explanations of this correlation are still debated. Recently the hypothesis of Drummond and Wilke became increasingly popular. The hypothesis suggests that errors of translation with subsequent misfolding of proteins are the universal factor limiting the rate of protein evolution because this misfolding causes premature cell death. The mitochondrial somatic mutations are the promising tool to examine this hypothesis: damaging mutations in a gene cannot cause the complete lack of the corresponding protein product because animal mitochondria contain many copies of chromosomes (5–15 copies per mitochondria) in somatic tissues. We analyzed somatic mutations in the mitochondrial cytb gene from hippocampus of Wistar rats. We did not find any indication of purifying selection in the cytb gene. Absence of selection does not support the Drummond-Wilke hypothesis which postulates strong purifying selection eliminating errors that cause protein misfolding. This result questions applicability of the Drummond-Wilke hypothesis to mitochodrial proteins.

About the authors

Polina Sergeyevna Loshchenova

Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences

Email: polilos@bionet.nsc.ru
engineer, sector of mutagenesis and repair

Igor Borisovich Rogozin

Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences

Email: rogozin@bionet.nsc.ru
senior research scientist, Ph.D., sector of mutagenesis and repair

Uliana Nicolayevna Rotskaya

Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences

Email: ulyanar@mail.ru
researcher, sector of mutagenesis and repair

Boris Arkadievich Malyarchuk

Institute of Biological Problems of the North, Far Eastern Division of the Russian Academy of Sciences

Email: malyar@ibpn.ru
Ph.D., Laboratory of Genetics

Georgiy Aleksandrovich Nevinskiy

Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences

Email: nevinsky@niboch.nsc.ru
Head of Laboratory, Ph.D., Laboratory of Repair Enzymes

Olga Ivanovna Sinitsyna

Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences

Email: sinitsyna@bionet.nsc.ru
Head of Sector, Ph.D., Sector of mutagenesis and repair

References

  1. Bastos A. D., Nair D., Taylor P. J. et al., 2011 Genetic monitoring detects an overlooked cryptic species and reveals the diversity and distribution of three invasive Rattus congeners in south Africa // BMC Genet. Vol. 12. P. 26.
  2. Bjornerfeldt S., Webster M. T., Vila C., 2006. Relaxation of selective constraint on dog mitochondrial DNA following domestication // Genome Res. Vol. 16. P. 990–994.
  3. Cherry J. L., 2010. Expression level, evolutionary rate, and the cost of expression // Genome Biol Evol. Vol. 2. P. 757–769.
  4. Corpet F., 1988. Multiple sequence alignment with hierarchical clustering // Nucleic Acids Res. Vol. 16. P. 10 881–10 890.
  5. Detmer S. A., Chan D. C., 2007. Functions and dysfunctions of mitochondrial dynamics // Nat. Rev. Mol. Cell Biol. Vol. 8. P. 870–879.
  6. Drummond, D. A., Wilke C. O., 2008. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution // Cell. Vol. 134. P. 341–352.
  7. Drummond, D. A., Wilke C. O., 2009. The evolutionary consequences of erroneous protein synthesis // Nat. Rev. Genet. Vol. 10. P. 715–724.
  8. Elson J. L., Turnbull D. M., Howell N., 2004. Comparative genomics and the evolution of human mitochondrial DNA: Assessing the effects of selection // Am. J. Hum. Genet. Vol. 74. P. 239–248.
  9. Excoffier L., Yang Z., 1999. Substitution rate variation among sites in mitochondrial hypervariable region I of humans and chimpanzees // Mol. Biol. Evol. Vol. 16. P. 1357–1368.
  10. Fuke S., Kubota-Sakashita M., Kasahara T. et al., 2011. Regional variation in mitochondrial DNA copy number in mouse brain // Biochim Biophys Acta. Vol. 1807. P. 270–274.
  11. He Y., Wu J., Dressman D. C. et al., 2010. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells // Nature. Vol. 464. P. 610–614.
  12. Hoppins S., Lackner L., Nunnari J., 2007. The machines that divide and fuse mitochondria // Annu. Rev. Biochem. Vol. 76. P. 751–780.
  13. Irwin D. M., Kocher T. D., Wilson A. C., 1991. Evolution of the cytochrome b gene of mammals // J. Mol. Evol. Vol. 32. P. 128–44.
  14. Jordan I. K., Rogozin I. B., Wolf Y. I., Koonin E. V., 2002. Microevolutionary genomics of bacteria // Theoretical Population Biology. Vol. 61. P. 435–447.
  15. Krylov D. M., Wolf Y. I., Rogozin I. B., Koonin E. V., 2003. Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution // Genome Res. Vol. 13. P. 2229–2235.
  16. Larsson N-G., 2010. Somatic Mitochondrial DNA Mutations in Mammalian Aging // Annu. Rev. Biochem. Vol. 79. P. 683–706.
  17. Li M., Schonberg A., Schaefer M. et al., 2010. Detecting heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes // Am. J. Hum. Genet. Vol. 87. P. 237–249.
  18. Lin X. D., Guo W. P., Wang W. et al., 2012. Migration of Norway rats resulted in the worldwide distribution of Seoul hantavirus today // J. Virol. Vol. 86. P. 972–981.
  19. Loud A. V., 1968. A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells // J. Cell. Biol. Vol. 37. P. 27–46.
  20. Malyarchuk B. A., Rogozin I. B., Berikov V. B. et al., 2002. Analysis of phylogenetically reconstructed mutational spectra in human mitochondrial DNA control region // Hum Genet. Vol. 111, P. 46–53.
  21. Managadze D., Rogozin I. B., Chernikova D. et al., 2011. Negative correlation between expression level and evolutionary rate of long intergenic noncoding RNAs // Genome Biol. Evol. Vol. 3. P. 1390–1404.
  22. Pak J. W., Vang F., Johnson C. et al., 2005. MtDNA point mutations are associated with deletion mutations in aged rat // Experimental Gerontology. Vol. 40. P. 209–218.
  23. Pal C., Papp B., Hurst L. D., 2001. Highly expressed genes in yeast evolve slowly // Genetics. Vol. 158. P. 927–931.
  24. Plata G., Gottesman M. E., Vitkup D., 2010. The rate of the molecular clock and the cost of gratuitous protein synthesis // Genome Biol. Vol. 11. P. 98.
  25. Rogozin I. B., Solovyov V. V., Kolchanov N. A., 1991. Somatic hypermutagenesis in immunoglobulin genes. I. Correlation between somatic mutations and repeats. Somatic mutation properties and clonal selection. // Biochim. Biophys. Acta. Vol. 1089. P. 175–182.
  26. Rotskaya U. N., Rogozin I. B., Vasyunina E. A., et al., 2010. High frequency of somatic mutations in rat liver mitochondrial DNA // Mutat. Res. Vol. 685. P. 97–102.
  27. Rowe K. C., Reno M. L., Richmond D. M. et al. 2008. Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muroidea: Murinae) // Mol. Phylogenet. Evol. Vol. 47. P. 84–101.
  28. Serizawa K., Suzuki H., Tsuchiya K., 2000. A phylogenetic view on species radiation in Apodemus inferred from variation of nuclear and mitochondrial genes // Biochem. Genet. Vol. 38. P. 27–40.
  29. Shen Y. Y., Shi P., Sun Y. B., Zhang Y. P., 2009. Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability // Genome Res. Vol. 19. P. 1760–1765.
  30. Soares P., Ermini L., Thomson N. et al., 2009. Correcting for purifying selection: an improved human mitochondrial molecular clock // Am. J. Hum. Genet. Vol. 84. P. 740–759.
  31. Spelbrink J. N., 2010. Functional Organization of Mammalian Mitochondrial DNA in Nucleoids: History, Recent Developments, and Future Challenges // IUBMB Life. Vol. 62. P. 19–32.
  32. Sun Y. B., Shen Y. Y., Irwin D. M., Zhang Y. P., 2011. Evaluating the roles of energetic functional constraints on teleost mitochondrial-encoded protein evolution // Mol. Biol. Evol. Vol. 28. P. 39–44.
  33. Tamura K., Nei M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees // Mol. Biol. Evol. Vol. 10. P. 512–526.
  34. Tamura K., Peterson D., Peterson N. et al., 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods // Mol. Biol. Evol. Vol. 28. P. 2731–2739.
  35. Trifunovic A., Wredenberg A., Falkenberg M. et al., 2004. Premature ageing in mice expressing defective mitochondrial DNA polymerase // Nature. Vol. 429. P. 417–423.
  36. Truong T. T., Yoshimatsu K., Araki K. et al., 2009. Molecular epidemiological and serological studies of hantavirus infection in northern Vietnam // J. Vet. Med. Sci. Vol. 71. P. 1357–1363.
  37. Tuppen A. L., Blakely E. L., Turnbull D. M. et al, 2010. Mitochondrial DNA mutations and human disease // Biochimica et Biophysica Acta. Vol. 1797. P. 113–128.
  38. Valnot I., Kassis J., Chretien D. et al., 1999. A mitochondrial cytochrome b mutation but no mutations of nuclearly encoded subunits in ubiquinol cytochrome c reductase (complex III) deficiency // Hum Genet. Vol. 104. P. 460–466.
  39. Youle R. J., van der Bliek A. M., 2012. Mitochondrial fission, fusion, and stress // Science. Vol. 337. P. 1062–1065.
  40. Zheng W., Khrapko K., Coller H. A. et al., 2006. Origins of human mitochondrial point mutations as DNA polymerase γ-mediated errors // Mutat. Res. Vol. 599. P. 11–20.
  41. Миллер Д. Г., 1972. Эксперименты в молекулярной генетике / под. ред. Алиханяна С. И. Москва: Мир. 395 c.
  42. Роцкая У. Н., Рогозин И. Б., Васюнина Е. А. и др., 2009. Анализ спектров соматических мутаций митохондриальной ДНК крыс линий Wistar и OXYS // Биохимия, Т. 74. С. 532–541.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Loshchenova P.S., Rogozin I.B., Rotskaya U.N., Malyarchuk B.A., Nevinskiy G.A., Sinitsyna O.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».