Automated morphometry of the prostate gland by the results of magnetic resonance imaging
- Authors: Nasibian N.M.1, Vladzymyrskyy A.V.1, Arzamasov K.M.1
-
Affiliations:
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
- Issue: Vol 16, No 2 (2025)
- Pages: 23-33
- Section: Original Study Articles
- URL: https://bakhtiniada.ru/clinpractice/article/view/312006
- DOI: https://doi.org/10.17816/clinpract677719
- EDN: https://elibrary.ru/VNHQYP
- ID: 312006
Cite item
Abstract
BACKGROUND: Within the framework of the experiment on using the innovative technologies in the field of computer vision for analyzing the medical images and on further usage of these technologies in the healthcare system of the City of Moscow, the research was carried out using the equipment based on the artificial intelligence (AI-service) for the purpose of automatization of the morphometry of the prostate gland using the magnetic resonance imaging (MRI), for the issue is topical due to the high incidence of urological diseases among men. Unlike the 11 previous systems, oriented at the retrospective analysis, this solution helps the radiologists in shortening the time of describing the examination results and in increasing their accuracy. AIM: to evaluate the quality and the validity of automatic morphometry of the prostate gland by the MRI results using the technologies of artificial intelligence in the settings of practical healthcare. METHODS: A prospective diagnostic research in accordance with the methodology of reporting results of scientific research involving the STARD 2015 diagnostic tests was conducted during the period from April until October of 2024. A total of 560 MRI results were used and compared to the data from the morphometric AI-service. RESULTS: An evaluation of the accuracy of using the AI-service for the morphometry of the prostate gland was carried out. A total of 7 clinical monitoring procedures were conducted using 560 MRI datasets with the complete conformity reported in 71.6%. The rate of false-negative cases was 3.9%, technical defects were found in 3.8% of the cases. The integral clinical evaluation has achieved the range of 88.0–97.0%, confirming the high diagnostic quality. The predominant errors were the ones related to the contouring of the gland (52%) and incorrect measurements (13%), often related to the prolapsing of the prostate gland apex. CONCLUSION: The automatization of routine measurements greatly contributes to the standardizing the processes of describing the results obtained by radio-diagnostic methods. This aspect is of special importance from the point of view of providing the continuity of medical aid in case of patients presenting to various medical organizations. The artificial intelligence technologies for the automatization of the prostate gland measurements have demonstrated high clinical value in 92.0%, which indicates their accuracy and quality. These data can be used for developing new MRI-based automated morphometry products.
Full Text
##article.viewOnOriginalSite##About the authors
Nelli M. Nasibian
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Author for correspondence.
Email: nelli-nasibyan94@yandex.ru
ORCID iD: 0009-0004-4620-6204
SPIN-code: 4936-2738
Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051
Anton V. Vladzymyrskyy
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: VladzimirskijAV@zdrav.mos.ru
ORCID iD: 0000-0002-2990-7736
SPIN-code: 3602-7120
MD, PhD
Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051Kirill M. Arzamasov
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
Email: ArzamasovKM@zdrav.mos.ru
ORCID iD: 0000-0001-7786-0349
SPIN-code: 3160-8062
MD, PhD
Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051References
- Васильев Ю.А., Владзимирский А.В., Омелянская О.В., и др. Обзор метаанализов о применении искусственного интеллекта в лучевой диагностике // Медицинская визуализация. 2024. Т. 28, № 3. С. 22–41. [Vasiliev YuA, Vladzymyrskyy AV, Omelyanskaya OV, et al. Review of meta-analyses on the use of artificial intelligence in radiology. Medical visualization. 2024;28(3):22–41]. doi: 10.24835/1607-0763-1425 EDN: QYASNZ
- Kelly BS, Judge C, Bollard SM, et al. Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE). Eur Radiol. 2022;32(11):7998–8007. doi: 10.1007/s00330-022-08784-6
- Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology. Nat Rev Canc. 2018;18(8):500–510. doi: 10.1038/s41568-018-0016-5
- Katzman BD, van der Pol CB, Soyer P, Patlas MN. Artificial intelligence in emergency radiology: A review of applications and possibilities. Diagn Interv Imaging. 2023;104(1):6–10. doi: 10.1016/j.diii.2022.07.005
- Ваньков В.В., Артемова О.Р., Карпов О.Э., и др. Итоги внедрения искусственного интеллекта в здравоохранении России // Врач и информационные технологии. 2024. № 3. С. 32–43. [Vankov VV, Artemova OR, Karpov OE, et al. Results of the implementation of artificial intelligence in the Russian healthcare. Medical doctor and information technology. 2024;(3):32–43]. doi: 10.25881/18110193_2024_3_32 EDN: TIASHB
- Гусев А.В., Артемова О.Р., Васильев Ю.А., Владзимирский А.В. Внедрение медицинских изделий с технологиями искусственного интеллекта в здравоохранении России: итоги 2023 г. // Национальное здравоохранение. 2024. Т. 5, № 2. С. 17–24. [Gusev AV, Artemova OR, Vasiliev YuA, Vladzymyrskyy AV. Integration of ai-based software as a medical device into Russian healthcare system: Results of 2023. National Health Care (Russia). 2024;5(2):17–24]. doi: 10.47093/2713 EDN:
- Владзимирский А.В., Васильев Ю.А., Арзамасов К.М., и др. Компьютерное зрение в лучевой диагностике: первый этап Московского эксперимента. 2-е изд. Москва: Издательские решения, 2023. 388 с. [Vladzimirsky AV, Vasiliev YA, Arzamasov KM, et al. Computer vision in radiation diagnostics: The first stage of the Moscow experiment. 2nd ed. Moscow: Izdatel’skie resheniya; 2023. 388 р. (In Russ.)]. EDN: FOYLXK
- Аполихин О.И., Сивков А.В., Комарова В.А., Никушина А.А. Болезни предстательной железы в Российской Федерации: статистические данные 2008-2017 гг. // Экспериментальная и клиническая урология. 2019. № 2. С. 4–13. [Apolikhin OI, Sivkov AV, Komarova VA, Nikushina AA. Prostate diseases in the Russian Federation: Statistical data for 2008-2017. Experimental & clinical urology. 2019;(2):4–13]. doi: 10.29188/2222-8543-2019-11-2-4-12 EDN: DHXMJP
- Chen J, He L, Ni Y, et al. Prevalence and associated risk factors of prostate cancer among a large Chinese population. Sci Rep. 2024;14(1):26338. doi: 10.1038/s41598-024-77863-z
- Tan EH, Burn E, Barclay NL, et al.; OPTIMA Consortium. Incidence, prevalence, and survival of prostate cancer in the UK. JAMA Network Open. 2024;7(9):e2434622. doi: 10.1001/jamanetworkopen.2024.34622
- Fernandes MC, Yildirim O, Woo S, et al. The role of MRI in prostate cancer: Current and future directions. Magma (New York). 2022;35(4):503–521. doi: 10.1007/s10334-022-01006-6
- Stempel CV, Dickinson L, Pendsé D. MRI in the management of prostate cancer. seminars in ultrasound, CT, and MR. 2020;41(4):366–372. doi: 10.1053/j.sult.2020.04.003
- Sunoqrot MR, Saha A, Hosseinzadeh M, et al. Artificial intelligence for prostate MRI: Open datasets, available applications, and grand challenges. Eur Radiol Exp. 2022;6(1):35. doi: 10.1186/s41747-022
- Васильев Ю.А., Владзимирский А.В., Омелянская О.В., и др. Методология тестирования и мониторинга программного обеспечения на основе технологий искусственного интеллекта для медицинской диагностики // Digital Diagnostics. 2023. Т. 4, № 3. С. 252–267. [Vasiliev YuA, Vlazimirsky AV, Omelyanskaya OV, et al. Methodology for testing and monitoring artificial intelligence-based software for medical diagnostics. Digital Diagnostics. 2023;4(3):252–267]. doi: 10.17816/DD321971 EDN: UEDORU
- Четвериков С.Ф., Арзамасов К.М., Андрейченко А.Е., и др. Подходы к формированию выборки для контроля качества работы систем искусственного интеллекта в медико-биологических исследованиях // Современные технологии в медицине. 2023. Т. 15. № 2. С. 19–27. [Chetverikov SF, Arzamasov KM, Andreichenko AE, et al. Approaches to sampling for quality control of artificial intelligence in biomedical research. Modern technologies in medicine. 2023;15(2):19–27]. doi: 10.17691/stm2023.15.2.02 EDN: FUKXYC
- Cohen JF, Korevaar DA, Altman DG, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6(11):e012799. doi: 10.1136/bmjopen-2016-012799
- Maki JH, Patel NU, Ulrich EJ, et al. Part I. Prostate cancer detection, artificial intelligence for prostate cancer and how we measure diagnostic performance: A comprehensive review. Curr Probl Diagn Radiol. 2024;53(5):606–613. doi: 10.1067/j.cpradiol.2024.04.002
- Bozgo V, Roest C, van Oort I, et al. Prostate MRI and artificial intelligence during active surveillance: Should we jump on the bandwagon? Eur Radiol. 2024;34(12):7698–7704. doi: 10.1007/s00330-024
- Бобровская Т.М., Васильев Ю.А., Никитин Н.Ю., и др. Объем выборки для оценки диагностической точности программного обеспечения на основе технологий искусственного интеллекта в лучевой диагностике // Сибирский журнал клинической и экспериментальной медицины. 2024. Т. 39, № 3. С. 188–198. [Bobrovskaya TM, Vasilev YuA, Nikitin NYu, et al. Sample size for assessing a diagnostic accuracy of ai-based software in radiology. Siberian Journal of Clinical and Experimental Medicine. 2024;39(3):188–198]. doi: 10.29001/2073-8552-2024-39-3-188-198 EDN: BPCPLL
- Belue MJ, Turkbey B. Tasks for artificial intelligence in prostate MRI. Eur Radiol Exp. 2022;6(1):33. doi: 10.1186/s41747-022-00287-9
- Harmon SA, Tuncer S, Sanford T, et al. Artificial intelligence at the intersection of pathology and radiology in prostate cancer. Diagnost Intervent Radiol (Ankara, Turkey). 2019;25(3):183–188. doi: 10.5152/dir.2019.19125
- Рева С.А., Шадеркин И.А., Зятчин И.В., Петров С.Б. Искусственный интеллект в онкоурологии // Экспериментальная и клиническая урология. 2021. Т. 14, № 2. С. 46–51. [Reva SA, Shaderkin IA, Zyatchin IV, Petrov SB. Artificial intelligence in cancer urology literature review. Experimental & clinical urology. 2021;14(2):46–51]. doi: 10.29188/2222-8543-2021-14-2-46-51 EDN: BHBSNP
- Абоян И.А., Редькин В.А., Назарук М.Г. и др. Искусственный интеллект в диагностике рака предстательной железы с помощью магнитно-резонансной томографии. Новый подход // Онкоурология. 2024. Т. 20, № 2. С. 35–43. [Aboyan IA, Redkin VA, Nazaruk MG, et al. Artificial intelligence in diagnosis of prostate cancer using magnetic resonance imaging. New approach. Cancer urology. 2024;20(2):35–43]. doi: 10.17650/1726-9776-2024-20-2-35-43 EDN: MBGNUY
- Алифов Д.Г., Звезда С.А., Кельн А.А., и др. Лучевая диагностика рака простаты на основе искусственного интеллекта и радиомного машинного обучения // Университетская медицина Урала. 2021. Т. 7, № 4. С. 48–50. [Alifov DG, Zvezda SA, Cologne AA, et al. Radiation diagnostics of prostate cancer based on artificial intelligence and radome machine learning. Universitetskaya meditsina Urala. 2021;7(4):48–50]. EDN: CUBNFQ
- Kaneko M, Magoulianitis V, Ramacciotti LS, et al. The novel green learning artificial intelligence for prostate cancer imaging: A balanced alternative to deep learning and radiomics. Urol Clin North Am. 2024;51(1):1–13. doi: 10.1016/j.ucl.2023.08.001
- Lu Y, Yuan R, Su Y, et al. Biparametric MRI-based radiomics for noninvastive discrimination of benign prostatic hyperplasia nodules (BPH) and prostate cancer nodules: A bio-centric retrospective cohort study. Sci Rep. 2025;15(1):654. doi: 10.1038/s41598-024-84908-w
- Lomer NB, Ashoobi MA, Ahmadzadeh AM, et al. MRI-based radiomics for predicting prostate cancer grade groups: A systematic review and metaanalysis of diagnostic test accuracy studies. Acad Radiol. 2024:S1076-6332(24)009541. doi: 10.1016/j.acra.2024.12.006
- Учеваткин А.А., Юдин А.Л., Афанасьева Н.И., Юматова Е.А. Оттенки серого: как и почему мы ошибаемся // Медицинская визуализация. 2020. Т. 24, № 3. С. 123–145. [Uchevatkin AA, Yudin AL, Afanas’yeva NI, Yumatova EA. Shades of grey: How and why we make mistakes. Medical visualization. 2020;24(3):123–145]. doi: 10.24835/1607-0763-2020-3-123-145 EDN: XVKCLV
- Van der Loo I, Bucho TM, Hanley JA, et al. Measurement variability of radiologists when measuring brain tumors. Eur J Radiol. 2024;183:111874. doi: 10.1016/j.ejrad.2024.111874
- Sanford TH, Zhang L, Harmon SA, et al. Data augmentation and transfer learning to improve generalizability of an automated prostate segmentation model. AJR. 2020;215(6):1403–1410. doi: 10.2214/AJR.19.22347
- Ushinsky A, Bardis M, Glavis-Bloom J, et al. A 3D-2D hybrid U-net convolutional neural network approach to prostate organ segmentation of multiparametric MRI. AJR. 2021;216(1):111–116. doi: 10.2214/AJR.19.22168
- Wang B, Lei Y, Tian S, et al. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation. Med Phys. 2019;46(4):1707–1718. doi: 10.1002/mp.13416
- Le MH, Chen J, Wang L, et al. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks. Phys Med Biol. 2017;62(16):6497–6514. doi: 10.1088/1361
- Liu S, Zheng H, Feng Y, Li W. Prostate cancer diagnosis using deep learning with 3D multiparametric MRI. In: Medical imaging: Computer-aided diagnosis. Computer Vision and Pattern Recognition (cs.CV); Machine Learning (stat.ML); 2017. P. 1013428. doi: 10.1117/12.2277121
- Cao R, Mohammadian Bajgiran A, Afshari Mirak S, et al. Joint prostate cancer detection and gleason score prediction in mp-MRI via FocalNet. IEEE Trans Med Imaging. 2019;38(11):2496–2506. doi: 10.1109/TMI.2019.2901928
- Ishioka J, Matsuoka Y, Uehara S, et al. Computeraided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm. BJU Int. 2018;122(3):411–417. doi: 10.1111/bju.14397
- Saha A, Bosma JS, Twilt JJ, et al.; PI-CAI consortium. Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): An international, paired, non-inferiority, confirmatory study. Lancet Oncol. 2024;25(7):879–887. doi: 10.1016/S1470
- Belue MJ, Harmon SA, Lay NS, et al. The low rate of adherence to checklist for artificial intelligence in medical imaging criteria among published prostate MRI artificial intelligence algorithms. J Am Coll Radiol. 2023;20(2):134–145. doi: 10.1016/j.jacr.2022.05.022
Supplementary files
