Ecology of Dengue Virus
- 作者: Sokolova M.O.1, Solovyov A.I.1, Blyumkin G.B.1, Maltsev O.V.1, Luong M.T.2, Soloveva P.A.1, Uskov A.N.3
-
隶属关系:
- Military Medical Academy
- Joint Russian-Vietnamese Tropical Research and Technological Center, Southern Branch
- Federal Scientific and Clinical Center of Infectious Diseases of the Federal Medical and Biological Agency
- 期: 卷 44, 编号 2 (2025)
- 页面: 219-227
- 栏目: Reviews
- URL: https://bakhtiniada.ru/RMMArep/article/view/310906
- DOI: https://doi.org/10.17816/rmmar678608
- EDN: https://elibrary.ru/AISVKU
- ID: 310906
如何引用文章
全文:
详细
Dengue virus and its interactions with Aedes mosquito vectors and human hosts have garnered significant scientific interest over the past decade. Despite extensive research, many aspects of these interactions remain poorly understood, highlighting the need for further investigation to develop effective therapeutic and preventive strategies to reduce the spread of dengue virus and the prevalence of the disease. The key challenges underpinning the relevance of dengue virus studies include the insufficient current preventive measures, the limited efficacy of approved vaccines, the absence of antiviral therapies with proven clinical efficacy, the risk of complications, and other factors. The review provides a characterization of dengue virus virions, highlighting the four virus serotypes, mutation rates and genome evolution. Genotypic and serotypic variations, which are regularly identified through the study of regional viral circulation, have the potential to give rise to new dengue strains, which can cause subsequent epidemics. The review details the stages of the viral life cycle in vertebrate and invertebrate hosts. Viral replication, transcription, and translation within cells of vertebrate and invertebrate hosts are examined, along with both typical and atypical routes of infection transmission. The ecology of A. aegypti and A. albopictus vectors, vector competence and the factors that reduce vector competence under natural conditions are discussed. Strategies for targeted intervention in the interactions between the pathogen, vector, and vertebrate host are examined. The most probable driver for the global expansion of the virus is the active migration of infected individuals. Research focused on identifying critical points in the protein interactions of the pathogen, vertebrate and invertebrate hosts, and exploring mechanisms to inhibit these interactions, appears promising for reducing the risk of dengue infection. The detection of imported cases of dengue fever in Russia underscores the need to implement measures for increasing public awareness regarding transmissible diseases and to minimize contact with potentially infected individuals when visiting tropical and subtropical regions.
作者简介
Margarita Sokolova
Military Medical Academy
编辑信件的主要联系方式.
Email: sokolova.rita@gmail.com
ORCID iD: 0000-0002-3457-4788
SPIN 代码: 3683-6054
Lecturer of the Biology Department
俄罗斯联邦, 6, Akademika Lebedeva str., Saint Peterburg, 194044Aleksey Solovyov
Military Medical Academy
Email: solopiter@gmail.com
ORCID iD: 0000-0002-3731-1756
SPIN 代码: 2502-8831
MD, Dr. Sci. (Medicine), Associate Professor, the Head of the Biology Department
俄罗斯联邦, 6, Akademika Lebedeva str., Saint Peterburg, 194044George Blyumkin
Military Medical Academy
Email: blumbiology@yandex.ru
ORCID iD: 0009-0006-8094-8222
lecturer of the Biology Department
俄罗斯联邦, 6, Akademika Lebedeva str., Saint Peterburg, 194044Oleg Maltsev
Military Medical Academy
Email: dr.snegur@gmail.com
ORCID iD: 0000-0002-6286-9946
SPIN 代码: 3570-2580
MD, Cand. Sci. (Medicine), the Deputy Head of the Infectious Diseases Department (with a course in medical parasitology and tropical diseases)
俄罗斯联邦, 6, Akademika Lebedeva str., Saint Peterburg, 194044Mo Luong
Joint Russian-Vietnamese Tropical Research and Technological Center, Southern Branch
Email: luongmo@vrtc.org.vn
ORCID iD: 0000-0002-6035-5933
SPIN 代码: 3460-3083
Cand. Sci. (Chemistry)
越南, Ho Chi Minh CityPolina Soloveva
Military Medical Academy
Email: linalimoon160301@gmail.com
ORCID iD: 0009-0000-9753-8322
SPIN 代码: 8455-6679
resident of the Infectious Diseases Department (with a course in parasitology and tropical diseases)
俄罗斯联邦, 6, Akademika Lebedeva str., Saint Peterburg, 194044Aleksandr Uskov
Federal Scientific and Clinical Center of Infectious Diseases of the Federal Medical and Biological Agency
Email: aouskov@gmail.com
ORCID iD: 0000-0003-3185-516X
SPIN 代码: 2297-6884
MD, Dr. Sci. (Medicine), Associate Professor, the Head of the Organization of Medical Care for Adults Department
俄罗斯联邦, 9, Professora Popova str., Saint Petersburg, 197022参考
- Weaver SC, Vasilakis N. Molecular evolution of dengue viruses: Contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infection, Genetics and Evolution. 2009;9(4):523–540. doi: 10.1016/j.meegid.2009.02.003
- Nafeev AA, Il’mukhina LV. Dengue fever in Russia: problems of diagnostics. Clinical Medicine. 2017;95(2):154–157. doi: 10.18821/0023-2149-2017-95-2-154-157 EDN: YJXXWD
- Pshenichcnaya NYu, Luzhetskaya AA, Konnova YuA, et al. Experience in the treatment of severe dengue fever with riamilovir. Infectious Diseases. 2024;22(2):133–136. doi: 10.20953/1729-9225-2024-2-133-136 EDN: WCLWES
- Nagy O, Nagy A, Koroknai A, et al. Diagnosis of dengue virus infections imported to hungary and phylogenetic analysis of virus isolates. Diagnostics. 2023;13(5):873. doi: 10.3390/ diagnostics13050873
- Han A, Sun B, Sun Z, et al. Molecular Characterization and Phylogenetic Analysis of the 2019 Dengue Outbreak in Wenzhou, China. Frontiers in cellular and infection microbiology. 2022;12:829380. doi: 10.3389/fcimb.2022.829380
- Sun J, Zhang H, Tan Q, et al. The epidemiological characteristics and molecular phylogeny of the dengue virus in Guangdong, China, 2015. Sci Rep. 2018;8(1):9976. doi: 10.1038/s41598-018-28349-2
- Zhao L, Guo X, Li L, et al. Phylodynamics unveils invading and diffusing patterns of dengue virus serotype-1 in Guangdong China from 1990 to 2019 under a global genotyping framework. Infectious diseases of poverty. 2024;13(1):43. doi: 10.1186/s40249-024-01211-6
- Mendez JA, Use-Ciro JA, Domingo C, et al. Phylogenetic reconstruction of dengue virus type 2 in Colombia. Virology Journal. 2012;9:64. doi: 10.1186/1743-422X-9-64
- Drumond BP, Fagundes LGS, Roch RP, et al. Phylogenetic analysis of Dengue virus 1 isolated from South Minas Gerais, Brazil. Brazilian journal of microbiology. 2016;47(1):251–258. doi: 10.1016/j.bjm.2015.11.016
- Dorji T, Yoon I-K, Holmes EC, et al. Diversity and Origin of Dengue Virus Serotypes 1, 2, and 3, Bhutan. Emerging Infectious Diseases. 2009;15(10):1630–1632. doi: 10.3201/eid1510.090123
- Tuan LV, Van NTT, Quan NH, Duoc PT. Phylogeny of Dengue virus type 2 isolated in the Central Highlands, Vietnam. Int J Trop Biol. 2017;65(2): 819–826. doi: 10.15517/rbt.v65i2.23535
- Tabachnick WJ. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses. Annual Review of Virology. 2016;3:125–145. doi: 10.1146/annurev-virology-110615-035630
- Ali A, Ali I. The Complete genome phylogeny of geographically distinct dengue virus serotype 2 isolates (1944–2013) supports further groupings within the cosmopolitan genotype. PLoS One. 2015;10(9):e0138900. doi: 10.1371/journal. pone.0138900
- Bell SM, Katzelnick L, Bedford T. Dengue genetic divergence generates within-serotype antigenic variation, but serotypes dominate evolutionary dynamics. eLife. 2019;8:e42496. doi: 10.7554/eLife.42496
- Araf Y, Ullah MA, Faruqui NA, et al. Dengue outbreak is a global recurrent crisis: review of the literature. Electronic Journal of General Medicine. 2021;18(1):em267. doi: 10.29333/ejgm/8948
- Roy SK, Bhattacharjee S. Dengue virus: epidemiology, biology, and disease aetiology. Canadian journal of microbiology. 2021;67(10):687–702. doi: 10.1139/cjm-2020-0572
- Borges de Souza UJ, Macedo YSM, Santos RN, et al. Circulation of Dengue Virus Serotype 1 genotype V and Dengue Virus Serotype 2 genotype III in Tocantins State, Northern Brazil, 2021–2022. Viruses. 2023;15(11):2136. doi: 10.20944/preprints202309.1376.v1
- Halstead SB. Dengue Virus – Mosquito Interactions. Annual Review of Entomology. 2008;53:273–291. doi: 10.1146/annurev.ento.53.103106.093326
- Araujo J, Nogueira R, Schatzmayr HG, et al. Phylogeography and evolutionary history of dengue virus type 3. Infection, Genetics and Evolution. 2009;9(4):716–725. doi: 10.1016/j.meegid.2008.10.005
- Atif M, Imran M, Qamar Z, et al. Phylogeny of dengue virus 2 based upon the NS3 gene among USA, Thailand, Singapore, Japan and Philippine. Journal of Human Virology & Retrovirology. 2016;3(5):119–122. doi: 10.15406/jhvrv.2016.03.00110
- Islam A, Deeba F, Tarai B, et al. Global and local evolutionary dynamics of Dengue virus serotypes 1, 3, and 4. Epidemiology and Infection. 2023;151:e127. doi: 10.1017/S0950268823000924
- Kyle JL, Harris E. Global Spread and Persistence of Dengue. Annual Review of Microbiology. 2008;62:71–92. doi: 10.1146/annurev.micro.62.081307.163005
- Hill V, Cleemput S, Fonseca V, et al. A new lineage nomenclature to aid genomic surveillance of dengue virus. PLoS biology. 2024;22(9):e3002834. doi: 10.1371/journal.pbio.3002834
- Qiu M, Zhao L, Li J. Beyond mosquito vectors: atypical transmission routes of dengue virus. Journal of Microbiology and Modern Techniques. 2023;7(1):103.
- Chew M-F, Poh K-S, Poh C-L. Peptides as therapeutic agents for dengue virus. International Journal of Medical Sciences. 2017;14(13):1342–1359. doi: 10.7150/ijms.21875
- Pimenova EV, Khrapova NP, Zamarina TV. Advances in the study of dengue virus: models of cell lines and the possibility of their use. Vestnik Volgogradskogo gosudarstvennogo universiteta. 2020;(1(73)):14–19. doi: 10.19163/1994-9480-2020-1(73)-14-19 EDN: PYGPVU
- Mairiang D, Zhang H, Sodja A, et al. Identification of New Protein Interactions between Dengue Fever Virus and Its Hosts, Human and Mosquito. PLoS One. 2013;8(1):e53535. doi: 10.1371/journal.pone.0053535
- Siriphanitchakorn T, Kini M, Ooi EE, Choy MM. Revisiting dengue virus- mosquito interactions: molecular insights into viral fitness. Journal of General Virology. 2021;102:001693. doi: 10.1099/jgv.0.001693
- Ramesh K, Walvekar VA, Wong B, et al. Increased Mosquito Midgut Infection by Dengue Virus Recruitment of Plasmin Is Blocked by an Endogenous Kazal-type Inhibitor. iScience. 2019;21:564–576. doi: 10.1016/j.isci. 2019.10.056
- Behura SK, Gomez-Machorro C, de Bruyn B, et al. Influence of mosquito genotype on transcriptional response to dengue virus infection. Functional & integrative genomics. 2014;14(3):581–589. doi: 10.1007/s10142-014-0376-1
- Buchman A, Wang H-W, Gamez S, et al. Broad dengue neutralization in mosquitoes expressing an engineered antibody. PLoS Pathog. 2020;16(1):e1008103. doi: 10.1371/journal.ppat.1008103
- Dutra AD, Poulin R, Ferreira FC. Evolutionary consequences of vector-borne transmission: how using vectors shapes host, vector and pathogen evolution. Parasitology. 2022;149:1667–1678. doi: 10.1017/S0031182022001378
- Pelosse P, Kribs-Zaleta CM, Ginoux M, et al. Influence of vectors’ risk-spreading strategies and environmental stochasticity on the epidemiology and evolution of vector-borne diseases: the example of chagas’ disease. PLoS One. 2013;8(8): e70830. doi: 10.1371/journal.pone.0070830
- Gandon S. Evolution and manipulation of vector host choice. The American Naturalist. 2018;192(1):23–34. doi: 10.1086/697575
- Liu Z, Zhang Q, Li L, et al. The effect of temperature on dengue virus transmission by Aedes mosquitoes. Frontiers in Cellular and Infection Microbiology. 2023;13:1242173. doi: 10.3389/fcimb.2023.1242173
- Fansiri T, Fontaine A, Diancourt L, et al. Genetic Mapping of Specific Interactions between Aedes aegypti Mosquitoes and Dengue Viruses. PLoS Genetics. 2013;9(8):e1003621. doi: 10.1371/journal.pgen.1003621
- Guo X, Xu Y, Bian G, et al. Response of the mosquito protein interaction network to dengue infection. BMC Genomics. 2010;11:380. doi: 10.1186/1471-2164-11-380
- Lambrechts L, Lequime S. Evolutionary dynamics of dengue virus populations within the mosquito vector. Current Opinion in Virology. 2016;21:47–53. doi: 10.1016/j.coviro.2016.07.013.hal-01445721
补充文件
