Body Composition Estimation: Bioelectrical Impedance Analysis, Skinfold Thickness Measurement or Anthropometry?

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

BACKGROUND: The body fat percentage is determined using dual-energy X-ray absorptiometry, bioelectrical impedance analysis, skinfold thickness measurement, and anthropometry. Skinfold thickness measurement and anthropometry are the most prevalent, yet less accurate, methods of body composition estimation. Body fat measurements obtained using different formulas based on skinfold thickness and anthropometry have not yet been compared to each other or to those obtained using bioelectrical impedance analysis in the Russian population.

AIM: The study aimed to compare body fat percentage measured through bioelectrical impedance analysis and 15 different methods based on skinfold thickness, body mass index, as well as neck, waist, hip, and thigh circumferences.

METHODS: This cross-sectional study included participants aged 17 to 30 years who provided informed consent. The main study parameters included sex, age, body weight, height, and skinfold thickness (above the triceps, above the biceps, chest, anterior axillary line, infrascapular region, above iliac crest, abdomen, and anterior thigh), as well as neck, waist, hip, and thigh circumferences. Accuniq BC720 was used to perform a bioelectrical impedance analysis with 15 body fat estimation formulas.

RESULTS: The body fat percentage ranged from 17.6% [14.7%; 20.4%] to 41.8% [39.5%; 43.1%] in women and from 7.2% [5.2%; 10.2%] to 29.1% [27.5%; 31.5%] in men, depending on the formulas used. The body fat percentages most comparable to the bioelectrical impedance analysis data were obtained using two formulas: the U.S. Navy body fat estimation formula for women and the Davidson formula for men. Bioelectrical impedance analysis can identify people with excess body fat, even if they have a normal body mass index, body fat percentage, or waist-to-hip ratio.

CONCLUSION: The U.S. Navy formula for women and the Davidson formula for men were the most accurate at determining body fat percentage, and they produced results comparable to those of bioelectrical impedance analysis. More research and specific formulas are needed to calculate body fat percentage in the Russian population.

作者简介

Anna Turusheva

Mechnikov North-Western State Medical University

编辑信件的主要联系方式.
Email: anna.turusheva@gmail.com
ORCID iD: 0000-0003-3347-0984
SPIN 代码: 9658-8074

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg

Vladimir Evpolov

Kirov Military Medical Academy

Email: evpol2008@mail.ru
ORCID iD: 0009-0006-7834-1421
俄罗斯联邦, Saint Petersburg

Denis Kovlen

Kirov Military Medical Academy

Email: denis.kovlen@mail.ru
ORCID iD: 0000-0001-6773-9713
SPIN 代码: 6002-2766

MD, Dr. Sci. (Medicine), Associate Professor

俄罗斯联邦, Saint Petersburg

Elena Sharanina

Mechnikov North-Western State Medical University

Email: elenasharan@ya.ru
ORCID iD: 0009-0006-3176-5286
俄罗斯联邦, Saint Petersburg

Ekaterina Vedernikova

Mechnikov North-Western State Medical University

Email: vedernikova1ekaterina@yandex.ru
ORCID iD: 0009-0009-3778-8683
俄罗斯联邦, Saint Petersburg

Alexander Polysaev

Mechnikov North-Western State Medical University

Email: alexander.polysaev@yandex.ru
ORCID iD: 0009-0008-7136-2232
俄罗斯联邦, Saint Petersburg

Anastasia Dmitrieva

Mechnikov North-Western State Medical University

Email: anastasia.dmitrieva.0000@gmail.com
ORCID iD: 0009-0003-2945-9288
俄罗斯联邦, Saint Petersburg

参考

  1. Boutari C, Mantzoros CS. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism. 2022;133:155217. doi: 10.1016/j.metabol.2022.155217
  2. Savina AA, Feiginova SI. The prevalence of obesity among the population of the Russian Federation: the period before the COVID-19 pandemic. Social Aspects of Population Health. 2022;68(5):4. doi: 10.21045/2071-5021-2022-68-5-4
  3. Drapkina OM, Eliashevich SO, Shepel RN. Obesity as a risk factor for chronic non-communicable diseases. Russian Journal of Cardiology. 2016;(6):73–79. doi: 10.15829/1560-4071-2016-6-73-79
  4. Chen GC, Arthur R, Iyengar NM, et al. Association between regional body fat and cardiovascular disease risk among postmenopausal women with normal body mass index. Eur Heart J. 2019;40(34):2849–2855. doi: 10.1093/eurheartj/ehz391
  5. Zeng Q, Dong SY, Sun XN, et al. Percent body fat is a better predictor of cardiovascular risk factors than body mass index. Braz J Med Biol Res. 2012;45(7):591–600. doi: 10.1590/s0100-879x2012007500059
  6. Ofstad AP, Sommer C, Birkeland KI, et al. Comparison of the associations between non-traditional and traditional indices of adiposity and cardiovascular mortality: an observational study of one million person-years of follow-up. Int J Obes (Lond). 2019;43(5):1082–1092. doi: 10.1038/s41366-019-0353-9
  7. Zadarko-Domaradzka M, Sobolewski M, Zadarko E. Comparison of several anthropometric indices related to body fat in predicting cardiorespiratory fitness in school-aged children — a single-center cross-sectional study. J Clin Med. 2023;12(19):6226. doi: 10.3390/jcm12196226
  8. Ackland TR, Lohman TG, Sundgot-Borgen J, et al. Current status of body composition assessment in sport: review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports Med. 2012;42(3):227–249. doi: 10.2165/11597140-000000000-00000
  9. Yang SW, Kim TH, Choi HM. The reproducibility and validity verification for body composition measuring devices using bioelectrical impedance analysis in Korean adults. J Exerc Rehabil. 2018;14(4):621–627. doi: 10.12965/jer.1836284.142
  10. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32(1):77–97. doi: 10.1079/bjn19740060
  11. Pollock ML, Hickman T, Kendrick Z, et al. Prediction of body density in young and middle-aged men. J Appl Physiol. 1976;40(3):300–304. doi: 10.1152/jappl.1976.40.3.300
  12. Martirosov EG, Nikolaev DV, Rudnev SG. Technologies and methods of human body composition assessment. Moscow: Nauka; 2006. 248 p. (In Russ.)
  13. Jackson AS, Pollock ML. Practical assessment of body composition. Phys Sportsmed. 1985;13(5):76–90. doi: 10.1080/00913847.1985.11708790
  14. Espana Romero V, Ruiz JR, Ortega FB, et al. Body fat measurement in elite sport climbers: comparison of skinfold thickness equations with dual energy X-ray absorptiometry. J Sports Sci. 2009;27(5):469–477. doi: 10.1080/02640410802603863
  15. Davidson LE, Wang J, Thornдоn JC, et al. Predicting fat percent by skinfolds in racial groups: Durnin and Womersley revisited. Med Sci Sports Exerc. 2011;43(3):542–549. doi: 10.1249/MSS.0b013e3181ef3f07
  16. Peterson MJ, Czerwinski SA, Siervogel RM. Development and validation of skinfold-thickness prediction equations with a 4-compartment model. Am J Clin Nutr. 2003;77(5):1186–1191. doi: 10.1093/ajcn/77.5.1186
  17. Gause-Nilsson I, Dey DK. Percent body fat estimation from skin fold thickness in the elderly. Development of a population-based prediction equation and comparison with published equations in 75-year-olds. J Nutr Health Aging. 2005;9:19–24.
  18. Kwok T, Woo J, Lau E. Prediction of body fat by anthropometry in older Chinese people. Obes Res. 2001;9:97–101. doi: 10.1038/oby.2001.12
  19. Visser M, van den Heuvel E, Deurenberg P. Prediction equations for the estimation of body composition in the elderly using anthropometric data. Br J Nutr. 1994;71:823–833. doi: 10.1079/BJN19940189
  20. Cicone ZS, Nickerson BS, Choi YJ, et al. Generalized equations for predicting percent body fat from anthropometric measures using a criterion five-compartment model. Med Sci Sports Exerc. 2021;53(12):2675–2682. doi: 10.1249/MSS.0000000000002754
  21. Peterson DD. History of the U.S. Navy Body Composition program. Mil Med. 2015;180(1):91–96. doi: 10.7205/MILMED-D-14-00266
  22. Yuhasz MS. Physical Fitness Manual. London Ontario: University of Western Ontario; 1974.
  23. Siri WE. Body composition from fluid spaces and density: analysis of methods. 1961. Nutrition. 1993;9(5):480–491; discussion 492.
  24. Brozek J, Grande F, Anderson JT, Keys A. Densiдоmetric analysis of body composition: Revision of some quantitative assumptions. Ann N Y Acad Sci. 1963;110:113–140.
  25. Subramanian SK, Rajendran R, Venkata Vijaya Sai A, Ramachandra S. Correlation of neck circumference with body fat percentage by bioelectrical impedance analysis. Int J Kinanthropometry. 2023;3(1):102–108. doi: 10.34256/ijk23111
  26. Preis SR, Massaro JM, Hoffmann U, et al. Neck circumference as a novel measure of cardiometabolic risk: the Framingham Heart study. J Clin Endocrinol Metab. 2010;95(8):3701–3710. doi: 10.1210/jc.2009-1779
  27. Joshipura K, Muñoz-Torres F, Vergara J, et al. Neck circumference may be a better alternative to standard anthropometric measures. J Diabetes Res. 2016;2016:6058916. doi: 10.1155/2016/6058916
  28. Hao X, He H, Tao L, et al. Waistline to thigh circumference ratio as a predictor of MAFLD: a health care worker study with 2-year follow-up. BMC Gastroenterol. 2024;24(1):144. doi: 10.1186/s12876-024-03229-4
  29. Chuang YC, Hsu KH, Hwang CJ, et al. Waist-to-thigh ratio can also be a better indicator associated with type 2 diabetes than traditional anthropometrical measurements in Taiwan population. Ann Epidemiol. 2006;16(5):321–331. doi: 10.1016/j.annepidem.2005.04.014
  30. Sinning WE, Dolny DG, Little KD, et al. Validity of “generalized” equations for body composition analysis in male athletes. Med Sci Sports Exerc. 1985;17(1):124–130.
  31. Chambers AJ, Parise E, McCrory JL, Cham R. A comparison of prediction equations for the estimation of body fat percentage in non-obese and obese older Caucasian adults in the United States. J Nutr Health Aging. 2014;18(6):586–590. doi: 10.1007/s12603-014-001

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Distribution of participants by body mass index.

下载 (70KB)
3. Fig. 2. Distribution of participants by body fat percentage according to body mass index, as measured by bioelectrical impedance analysis.

下载 (100KB)
4. Fig. 3. Distribution of participants by body fat percentage according to body mass index and reference values for bioelectrical impedance analysis.

下载 (118KB)
5. Fig. 4. Body fat percentage in men and women based on various diagnostic criteria. 1, 2, Siri and Brozek equations used for converting the D coefficient into body fat percentage, respectively.

下载 (171KB)

版权所有 © Eco-Vector, 2025

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».