Lesions of the heart and parenchymatous organs in patients with COVID-19 and other acute respiratory infections
- Authors: Khokhlov R.A.1,2, Yarmonova M.V.2, Tribuntseva L.V.1
-
Affiliations:
- Voronezh State Medical University named after N.N. Burdenko
- Voronezh Regional Clinical Consulting and Diagnostic Center
- Issue: Vol 27, No 4 (2023)
- Pages: 21-32
- Section: Review
- URL: https://bakhtiniada.ru/RFD/article/view/249844
- DOI: https://doi.org/10.17816/RFD622794
- ID: 249844
Cite item
Abstract
Based on available literature, this study aimed to critically assess the effect of SARS-CoV-2 and other respiratory viruses on the heart and parenchymatous internal organs, identify their common and distinctive features, assess the frequency of cytokine storm and “post-infection” syndrome, and identify risk factors for severe systemic reaction and damage to internal organs, particularly the heart.
In the databases of MEDLINE/PubMed, eLibrary, Web of Science, CyberLeninka, and Openmedcom.ru, primary information (full-text and abstract databases) in English and Russian was searched using selected keywords from 2003 to 2023.
Acute respiratory viral infection pathogens can cause not only respiratory but also cardinal, gastroenterological, neurological, and other complications.
Acute respiratory viral infections have many similarities in their effects on parenchymal organs. The emergence of new viruses requires in-depth study, and it is important to consider both the distinctive features of the clinical picture of viral infections and the general patterns of influence on internal organs. In the medium term, patients who have COVID-19 may have complex heart damage in the form of a decrease in ventricular ejection fraction, appearance of pericardial effusion, and development of various types of focal myocardial lesions. The combined nature of damage to the heart and parenchymal organs is influenced by background diseases, nature of the course of viral infection, and features of therapy. The features of lesions of parenchymal organs and the heart after acute respiratory viral infection require further study, including their effect on the development of late complications.
Full Text
##article.viewOnOriginalSite##About the authors
Roman A. Khokhlov
Voronezh State Medical University named after N.N. Burdenko; Voronezh Regional Clinical Consulting and Diagnostic Center
Email: visartis@yandex.ru
MD, Dr. Sci. (Med.), Assistant Professor
Russian Federation, 10, st. Studencheskaya, 394036, Voronezh; 5А Lenina Square, Voronezh, 394018Margarita V. Yarmonova
Voronezh Regional Clinical Consulting and Diagnostic Center
Email: mv.yarmonova@mail.ru
ORCID iD: 0009-0008-1391-1993
SPIN-code: 9646-6858
cardiologist
Russian Federation, 5А Lenina Square, Voronezh, 394018Lyudmila V. Tribuntseva
Voronezh State Medical University named after N.N. Burdenko
Author for correspondence.
Email: tribunzewa@yandex.ru
ORCID iD: 0000-0002-3617-8578
SPIN-code: 1115-1877
MD, Cand. Sci. (Med.), Associate Professor
Russian Federation, 10, st. Studencheskaya, 394036, VoronezhReferences
- Abdelrahman Z, Li M, Wang X. Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A respiratory viruses. Front Immunol. 2020;11:552909. doi: 10.3389/fimmu.2020.552909
- The WHO MERS-CoV Research Group. State of knowledge and data gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in humans. PLoS Curr. 2013;5:ecurrents.outbreaks.0bf719e352e7478f8ad85fa30127ddb8. doi: 10.1371/currents.outbreaks.0bf719e352e7478f8ad85fa30127ddb8
- Stadler K, Masignani V, Eickmann M, et al. SARS--beginning to understand a new virus. Nat Rev Microbiol. 2003;1(3):209–218. doi: 10.1038/nrmicro775
- Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130–137. doi: 10.1111/resp.13196
- Peiris JS, Yuen KY, Osterhaus AD, Stöhr K. The severe acute respiratory syndrome. N Engl J Med. 2003;349(25):2431–2441. doi: 10.1056/NEJMra032498
- Drapkina OM, Maev IV, Bakulin IG, et al. Interim guidelines: Diseases of the digestive organs in the context of a new coronavirus infection pandemic (COVID-19). Profilakticheskaya Meditsina. 2020;23(3-2):120–152. (In Russ.) doi: 10.17116/profmed202023032120
- de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523–534. doi: 10.1038/nrmicro.2016.81
- Kandeel M, Ibrahim A, Fayez M, Al-Nazawi M. From SARS and MERS CoVs to SARS-CoV-2: Moving toward more biased codon usage in viral structural and nonstructural genes. J Med Virol. 2020;92(6):660–666. doi: 10.1002/jmv.25754
- Satija N, Lal SK. The molecular biology of SARS coronavirus. Ann N Y Acad Sci. 2007;1102(1):26–38. doi: 10.1196/annals.1408.002
- Giacalone M, Scheier E, Shavit I. Multisystem inflammatory syndrome in children (MIS-C): a mini-review. Int J Emerg Med. 2021;14(1):50. doi: 10.1186/s12245-021-00373-6
- Al-Omari A, Rabaan AA, Salih S, et al. MERS coronavirus outbreak: Implications for emerging viral infections. Diagn Microbiol Infect Dis. 2019;93(3):265–285. doi: 10.1016/j.diagmicrobio.2018.10.011
- Mackay IM, Arden KE. MERS coronavirus: diagnostics, epidemiology and transmission. Virol J. 2015;12:222. doi: 10.1186/s12985-015-0439-5
- Petrosillo N, Viceconte G, Ergonul O, et al. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020;26(6):729–734. doi: 10.1016/j.cmi.2020.03.026
- Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607–613. doi: 10.1016/j.jinf.2020.03.037
- Letko M, Munster V. Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV. bioRxiv. 2020:2020.01.22.915660. doi: 10.1101/2020.01.22.915660
- Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17(9):1463–1471. doi: 10.1016/j.hrthm.2020.05.001
- Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–936. doi: 10.1056/NEJMoa2001191
- Bazhukhina IV, Klimova NV, Gaus AA, Petrova NN. The role of perfusion computed tomography as a predictor of pancreatic necrosis in acute pancreatitis. Radiology – Practice. 2022;(3):11–23. (In Russ.) doi: 10.52560/2713-0118-2022-3-11-23
- Platonova TA, Golubkova AA, Sklyar MS, et al. Clinical and laboratory aspects of gastrointestinal tract damage in СOVID-19. Medical almanac. 2021;(4(69)):34–41. (In Russ.)
- Lei P, Zhang L, Han P, et al. Liver injury in patients with COVID-19: clinical profiles, CT findings, the correlation of the severity with liver injury. Hepatol Int. 2020;14(5):733–742. doi: 10.1007/s12072-020-10087-1
- Liu Q, Shi Y, Cai J, et al. Pathological changes in the lungs and lymphatic organs of 12 COVID-19 autopsy cases. Natl Sci Rev. 2020;7(12):1868–1878. doi: 10.1093/nsr/nwaa247
- Chen YT, Shao SC, Hsu CK, et al. Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis. Crit Care. 2020;24(1):346. doi: 10.1186/s13054-020-03009-y
- Townsend L, Dyer AH, Jones K, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020;15(11):e0240784. doi: 10.1371/journal.pone.0240784
- Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis (Lond). 2021;53(10):737–754. doi: 10.1080/23744235.2021.1924397
- Zhang L, Zhang X, Ma Q, et al. Transcriptomics and proteomics in the study of H1N1 2009. Genomics Proteomics Bioinformatics. 2010;8(3):139–144. doi: 10.1016/S1672-0229(10)60016-2
- Harish MM, Ruhatiya RS. Influenza H1N1 infection in immunocompromised host: a concise review. Lung India. 2019;36(4):330–336. doi: 10.4103/lungindia.lungindia_464_18
- Michaelis M, Doerr HW, Cinatl J Jr. An influenza A H1N1 virus revival — pandemic H1N1/09 virus. Infection. 2009;37(5):381–389. doi: 10.1007/s15010-009-9181-5
- Komine-Aizawa S, Suzaki A, Trinh QD, et al. H1N1/09 influenza A virus infection of immortalized first trimester human trophoblast cell lines. Am J Reprod Immunol. 2012;68(3):226–232. doi: 10.1111/j.1600-0897.2012.01172.x
- Mjid M, Cherif J, Toujani S, et al. Infuenzae A (H1N1): about 189 cases. Tunis Med. 2014;92(12):748–751. (In French)
- Golokhvastova NO. Peculiarities of present-day morbidity of influenza A (H1N1 swl). Klin Med (Mosk). 2012;90(6):18–25. (In Russ.)
- Bearman GM, Shankaran S, Elam K. Treatment of severe cases of pandemic (H1N1) 2009 influenza: review of antivirals and adjuvant therapy. Recent Pat Antiinfect Drug Discov. 2010;5(2):152–156. doi: 10.2174/157489110791233513
- Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328. doi: 10.3390/ijms2013328
- Zayratyants OV, Samsonova MV, Cherniaev AL, et al. COVID-19 pathology: experience of 2000 autopsies. Russian Journal of Forensic Medicine. 2020;6(4):10–23. (In Russ.) doi: 10.19048/fm340
- Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623. doi: 10.1016/j.tmaid.2020.101623
- Rudroff T, Fietsam AC, Deters JR, et al. Post-COVID-19 fatigue: potential contributing factors. Brain Sci. 2020;10(12):1012. doi: 10.3390/brainsci10121012
- Mohanty A, Tiwari-Pandey R, Pandey NR. Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response. J Cell Commun Signal. 2019;13(3):303–318. doi: 10.1007/s12079-019-00507-9
- Mehandru S, Merad M. Pathological sequelae of long-haul COVID. Nat Immunol. 2022;23(2):194–202. doi: 10.1038/s41590-021-01104-y
- Delabranche X, Helms J, Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care. 2017;7(1):117. doi: 10.1186/s13613-017-0339-5
- Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020;382(19):1787–1799. doi: 10.1056/NEJMoa2001282
- Zhang C, Wu Z, Li JW, et al. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020;55(5):105954. doi: 10.1016/j.ijantimicag.2020.105954
- Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117(20):10970–10975. doi: 10.1073/pnas.2005615117
- Kostiuk SA, Simirski VV, Gorbich YL, et al. Cytokine storm at COVID-19. Mezhdunarodnye obzory: klinicheskaya praktika i zdorov’e. 2021;(1):41–52. (In Russ.)
- Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46–e47. doi: 10.1016/S2213-2600(20)30216-2
- Amirov NB, Davletshina EhI, Vasil’eva AG, Fatykhov RG. Postcovid syndrome: multisystem “deficits”. The Bulletin of Contemporary Clinical Medicine. 2021;14(6):94–104. (In Russ.) doi: 10.20969/VSKM.2021.14(6).94-104
- Nguyen JL, Yang W, Ito K, et al. Seasonal influenza infections and cardiovascular disease mortality. JAMA Cardiol. 2016;1(3):274–281. doi: 10.1001/jamacardio.2016.0433
- Campbell CM, Kahwash R. Will complement inhibition be the new target in treating COVID-19 related systemic thrombosis? Circulation. 2020;141(22):1739–1741. doi: 10.1161/CIRCULATIONAHA.120.047419
- Carod-Artal FJ. Post-COVID-19 syndrome: epidemiology, diagnostic criteria and pathogenic mechanisms involved. Rev Neurol. 2021;72(11):384–396. doi: 10.33588/rn.7211.2021230
- Tulu TW, Wan TK, Chan CL, et al. Machine learning-based prediction of COVID-19 mortality using immunological and metabolic biomarkers. BMC Digit Health. 2023;1(1):6. doi: 10.1186/s44247-022-00001-0
- Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802–810. doi: 10.1001/jamacardio.2020.0950
- Gluckman TJ, Bhave NM, Allen LA, et al. 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2022;79:1717–1756. doi: 10.1016/j.jacc.2022.02.003
- Khokhlov RA, Yarmonova MV, Tribuntseva LV, Prozorova GG. Features of myocardial injuries in patients with postcovid syndrome. Nauchno-meditsinskii vestnik Tsentral’nogo Chernozem’ya. 2022;(88):43–50. (In Russ.)
- Petersen SE, Khanji MY, Plein S, et al. European Association of Cardiovascular Imaging expert consensus paper: a comprehensive review of cardiovascular magnetic resonance normal values of cardiac chamber size and aortic root in adults and recommendations for grading severity. Eur Heart J Cardiovasc Imaging. 2019;20(12):1321–1331. doi: 10.1093/ehjci/jez232
- Basso C, Leone O, Rizzo S, et al. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur Heart J. 2020;41(39):3827–3835. doi: 10.1093/eurheartj/ehaa664
- Kogan EA, Berezovskiy YS, Blagova OV, et al. Miocarditis in patients with COVID-19 confirmed by immunohistochemical. Kardiologiia. 2020;60(7):4–10. (In Russ.) doi: 10.18087/cardio.2020.7.n1209
- Hendren NS, Drazner MH, Bozkurt B, Cooper LT Jr. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation. 2020;141(23):1903–1914. doi: 10.1161/CIRCULATIONAHA.120.047349
- Peretto G, Villatore A, Rizzo S, et al. The spectrum of COVID-19-associated myocarditis: a patient-tailored multidisciplinary approach. J Clin Med. 2021;10(9):1974. doi: 10.3390/jcm10091974
- Blagova OV, Kogan EA, Lutokhina YA, et al. Subacute and chronic post-covid myoendocarditis: clinical presentation, role of coronavirus persistence and autoimmune mechanisms. Kardiologiia. 2021;61(6):11–27. doi: 10.18087/cardio.2021.6.n1659
- Huang L, Zhao P, Tang D, et al. cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. JACC Cardiovasc Imaging. 2020;13(11):2330–2339. doi: 10.1016/j.jcmg.2020.05.004
- Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570
- Khokhlov L, Khokhlov R, Lipovka S, et al. Cardiac injury described by contrast-enhanced cardiac magnetic resonance imaging in patients recovered from COVID-19. J Am Coll Cardiol. 2022;79(9):2100. doi: 10.1016/S0735-1097(22)03091-1
Supplementary files
