Lesions of the heart and parenchymatous organs in patients with COVID-19 and other acute respiratory infections

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on available literature, this study aimed to critically assess the effect of SARS-CoV-2 and other respiratory viruses on the heart and parenchymatous internal organs, identify their common and distinctive features, assess the frequency of cytokine storm and “post-infection” syndrome, and identify risk factors for severe systemic reaction and damage to internal organs, particularly the heart.

In the databases of MEDLINE/PubMed, eLibrary, Web of Science, CyberLeninka, and Openmedcom.ru, primary information (full-text and abstract databases) in English and Russian was searched using selected keywords from 2003 to 2023.

Acute respiratory viral infection pathogens can cause not only respiratory but also cardinal, gastroenterological, neurological, and other complications.

Acute respiratory viral infections have many similarities in their effects on parenchymal organs. The emergence of new viruses requires in-depth study, and it is important to consider both the distinctive features of the clinical picture of viral infections and the general patterns of influence on internal organs. In the medium term, patients who have COVID-19 may have complex heart damage in the form of a decrease in ventricular ejection fraction, appearance of pericardial effusion, and development of various types of focal myocardial lesions. The combined nature of damage to the heart and parenchymal organs is influenced by background diseases, nature of the course of viral infection, and features of therapy. The features of lesions of parenchymal organs and the heart after acute respiratory viral infection require further study, including their effect on the development of late complications.

About the authors

Roman A. Khokhlov

Voronezh State Medical University named after N.N. Burdenko; Voronezh Regional Clinical Consulting and Diagnostic Center

Email: visartis@yandex.ru

MD, Dr. Sci. (Med.), Assistant Professor

Russian Federation, 10, st. Studencheskaya, 394036, Voronezh; 5А Lenina Square, Voronezh, 394018

Margarita V. Yarmonova

Voronezh Regional Clinical Consulting and Diagnostic Center

Email: mv.yarmonova@mail.ru
ORCID iD: 0009-0008-1391-1993
SPIN-code: 9646-6858

cardiologist

Russian Federation, 5А Lenina Square, Voronezh, 394018

Lyudmila V. Tribuntseva

Voronezh State Medical University named after N.N. Burdenko

Author for correspondence.
Email: tribunzewa@yandex.ru
ORCID iD: 0000-0002-3617-8578
SPIN-code: 1115-1877

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, 10, st. Studencheskaya, 394036, Voronezh

References

  1. Abdelrahman Z, Li M, Wang X. Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A respiratory viruses. Front Immunol. 2020;11:552909. doi: 10.3389/fimmu.2020.552909
  2. The WHO MERS-CoV Research Group. State of knowledge and data gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in humans. PLoS Curr. 2013;5:ecurrents.outbreaks.0bf719e352e7478f8ad85fa30127ddb8. doi: 10.1371/currents.outbreaks.0bf719e352e7478f8ad85fa30127ddb8
  3. Stadler K, Masignani V, Eickmann M, et al. SARS--beginning to understand a new virus. Nat Rev Microbiol. 2003;1(3):209–218. doi: 10.1038/nrmicro775
  4. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130–137. doi: 10.1111/resp.13196
  5. Peiris JS, Yuen KY, Osterhaus AD, Stöhr K. The severe acute respiratory syndrome. N Engl J Med. 2003;349(25):2431–2441. doi: 10.1056/NEJMra032498
  6. Drapkina OM, Maev IV, Bakulin IG, et al. Interim guidelines: Diseases of the digestive organs in the context of a new coronavirus infection pandemic (COVID-19). Profilakticheskaya Meditsina. 2020;23(3-2):120–152. (In Russ.) doi: 10.17116/profmed202023032120
  7. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523–534. doi: 10.1038/nrmicro.2016.81
  8. Kandeel M, Ibrahim A, Fayez M, Al-Nazawi M. From SARS and MERS CoVs to SARS-CoV-2: Moving toward more biased codon usage in viral structural and nonstructural genes. J Med Virol. 2020;92(6):660–666. doi: 10.1002/jmv.25754
  9. Satija N, Lal SK. The molecular biology of SARS coronavirus. Ann N Y Acad Sci. 2007;1102(1):26–38. doi: 10.1196/annals.1408.002
  10. Giacalone M, Scheier E, Shavit I. Multisystem inflammatory syndrome in children (MIS-C): a mini-review. Int J Emerg Med. 2021;14(1):50. doi: 10.1186/s12245-021-00373-6
  11. Al-Omari A, Rabaan AA, Salih S, et al. MERS coronavirus outbreak: Implications for emerging viral infections. Diagn Microbiol Infect Dis. 2019;93(3):265–285. doi: 10.1016/j.diagmicrobio.2018.10.011
  12. Mackay IM, Arden KE. MERS coronavirus: diagnostics, epidemiology and transmission. Virol J. 2015;12:222. doi: 10.1186/s12985-015-0439-5
  13. Petrosillo N, Viceconte G, Ergonul O, et al. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020;26(6):729–734. doi: 10.1016/j.cmi.2020.03.026
  14. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607–613. doi: 10.1016/j.jinf.2020.03.037
  15. Letko M, Munster V. Functional assessment of cell entry and receptor usage for lineage B β-coronaviruses, including 2019-nCoV. bioRxiv. 2020:2020.01.22.915660. doi: 10.1101/2020.01.22.915660
  16. Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17(9):1463–1471. doi: 10.1016/j.hrthm.2020.05.001
  17. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–936. doi: 10.1056/NEJMoa2001191
  18. Bazhukhina IV, Klimova NV, Gaus AA, Petrova NN. The role of perfusion computed tomography as a predictor of pancreatic necrosis in acute pancreatitis. Radiology – Practice. 2022;(3):11–23. (In Russ.) doi: 10.52560/2713-0118-2022-3-11-23
  19. Platonova TA, Golubkova AA, Sklyar MS, et al. Clinical and laboratory aspects of gastrointestinal tract damage in СOVID-19. Medical almanac. 2021;(4(69)):34–41. (In Russ.)
  20. Lei P, Zhang L, Han P, et al. Liver injury in patients with COVID-19: clinical profiles, CT findings, the correlation of the severity with liver injury. Hepatol Int. 2020;14(5):733–742. doi: 10.1007/s12072-020-10087-1
  21. Liu Q, Shi Y, Cai J, et al. Pathological changes in the lungs and lymphatic organs of 12 COVID-19 autopsy cases. Natl Sci Rev. 2020;7(12):1868–1878. doi: 10.1093/nsr/nwaa247
  22. Chen YT, Shao SC, Hsu CK, et al. Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis. Crit Care. 2020;24(1):346. doi: 10.1186/s13054-020-03009-y
  23. Townsend L, Dyer AH, Jones K, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020;15(11):e0240784. doi: 10.1371/journal.pone.0240784
  24. Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis (Lond). 2021;53(10):737–754. doi: 10.1080/23744235.2021.1924397
  25. Zhang L, Zhang X, Ma Q, et al. Transcriptomics and proteomics in the study of H1N1 2009. Genomics Proteomics Bioinformatics. 2010;8(3):139–144. doi: 10.1016/S1672-0229(10)60016-2
  26. Harish MM, Ruhatiya RS. Influenza H1N1 infection in immunocompromised host: a concise review. Lung India. 2019;36(4):330–336. doi: 10.4103/lungindia.lungindia_464_18
  27. Michaelis M, Doerr HW, Cinatl J Jr. An influenza A H1N1 virus revival — pandemic H1N1/09 virus. Infection. 2009;37(5):381–389. doi: 10.1007/s15010-009-9181-5
  28. Komine-Aizawa S, Suzaki A, Trinh QD, et al. H1N1/09 influenza A virus infection of immortalized first trimester human trophoblast cell lines. Am J Reprod Immunol. 2012;68(3):226–232. doi: 10.1111/j.1600-0897.2012.01172.x
  29. Mjid M, Cherif J, Toujani S, et al. Infuenzae A (H1N1): about 189 cases. Tunis Med. 2014;92(12):748–751. (In French)
  30. Golokhvastova NO. Peculiarities of present-day morbidity of influenza A (H1N1 swl). Klin Med (Mosk). 2012;90(6):18–25. (In Russ.)
  31. Bearman GM, Shankaran S, Elam K. Treatment of severe cases of pandemic (H1N1) 2009 influenza: review of antivirals and adjuvant therapy. Recent Pat Antiinfect Drug Discov. 2010;5(2):152–156. doi: 10.2174/157489110791233513
  32. Kelley N, Jeltema D, Duan Y, et al. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328. doi: 10.3390/ijms2013328
  33. Zayratyants OV, Samsonova MV, Cherniaev AL, et al. COVID-19 pathology: experience of 2000 autopsies. Russian Journal of Forensic Medicine. 2020;6(4):10–23. (In Russ.) doi: 10.19048/fm340
  34. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623. doi: 10.1016/j.tmaid.2020.101623
  35. Rudroff T, Fietsam AC, Deters JR, et al. Post-COVID-19 fatigue: potential contributing factors. Brain Sci. 2020;10(12):1012. doi: 10.3390/brainsci10121012
  36. Mohanty A, Tiwari-Pandey R, Pandey NR. Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response. J Cell Commun Signal. 2019;13(3):303–318. doi: 10.1007/s12079-019-00507-9
  37. Mehandru S, Merad M. Pathological sequelae of long-haul COVID. Nat Immunol. 2022;23(2):194–202. doi: 10.1038/s41590-021-01104-y
  38. Delabranche X, Helms J, Meziani F. Immunohaemostasis: a new view on haemostasis during sepsis. Ann Intensive Care. 2017;7(1):117. doi: 10.1186/s13613-017-0339-5
  39. Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med. 2020;382(19):1787–1799. doi: 10.1056/NEJMoa2001282
  40. Zhang C, Wu Z, Li JW, et al. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020;55(5):105954. doi: 10.1016/j.ijantimicag.2020.105954
  41. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020;117(20):10970–10975. doi: 10.1073/pnas.2005615117
  42. Kostiuk SA, Simirski VV, Gorbich YL, et al. Cytokine storm at COVID-19. Mezhdunarodnye obzory: klinicheskaya praktika i zdorov’e. 2021;(1):41–52. (In Russ.)
  43. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46–e47. doi: 10.1016/S2213-2600(20)30216-2
  44. Amirov NB, Davletshina EhI, Vasil’eva AG, Fatykhov RG. Postcovid syndrome: multisystem “deficits”. The Bulletin of Contemporary Clinical Medicine. 2021;14(6):94–104. (In Russ.) doi: 10.20969/VSKM.2021.14(6).94-104
  45. Nguyen JL, Yang W, Ito K, et al. Seasonal influenza infections and cardiovascular disease mortality. JAMA Cardiol. 2016;1(3):274–281. doi: 10.1001/jamacardio.2016.0433
  46. Campbell CM, Kahwash R. Will complement inhibition be the new target in treating COVID-19 related systemic thrombosis? Circulation. 2020;141(22):1739–1741. doi: 10.1161/CIRCULATIONAHA.120.047419
  47. Carod-Artal FJ. Post-COVID-19 syndrome: epidemiology, diagnostic criteria and pathogenic mechanisms involved. Rev Neurol. 2021;72(11):384–396. doi: 10.33588/rn.7211.2021230
  48. Tulu TW, Wan TK, Chan CL, et al. Machine learning-based prediction of COVID-19 mortality using immunological and metabolic biomarkers. BMC Digit Health. 2023;1(1):6. doi: 10.1186/s44247-022-00001-0
  49. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802–810. doi: 10.1001/jamacardio.2020.0950
  50. Gluckman TJ, Bhave NM, Allen LA, et al. 2022 ACC expert consensus decision pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2022;79:1717–1756. doi: 10.1016/j.jacc.2022.02.003
  51. Khokhlov RA, Yarmonova MV, Tribuntseva LV, Prozorova GG. Features of myocardial injuries in patients with postcovid syndrome. Nauchno-meditsinskii vestnik Tsentral’nogo Chernozem’ya. 2022;(88):43–50. (In Russ.)
  52. Petersen SE, Khanji MY, Plein S, et al. European Association of Cardiovascular Imaging expert consensus paper: a comprehensive review of cardiovascular magnetic resonance normal values of cardiac chamber size and aortic root in adults and recommendations for grading severity. Eur Heart J Cardiovasc Imaging. 2019;20(12):1321–1331. doi: 10.1093/ehjci/jez232
  53. Basso C, Leone O, Rizzo S, et al. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur Heart J. 2020;41(39):3827–3835. doi: 10.1093/eurheartj/ehaa664
  54. Kogan EA, Berezovskiy YS, Blagova OV, et al. Miocarditis in patients with COVID-19 confirmed by immunohistochemical. Kardiologiia. 2020;60(7):4–10. (In Russ.) doi: 10.18087/cardio.2020.7.n1209
  55. Hendren NS, Drazner MH, Bozkurt B, Cooper LT Jr. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation. 2020;141(23):1903–1914. doi: 10.1161/CIRCULATIONAHA.120.047349
  56. Peretto G, Villatore A, Rizzo S, et al. The spectrum of COVID-19-associated myocarditis: a patient-tailored multidisciplinary approach. J Clin Med. 2021;10(9):1974. doi: 10.3390/jcm10091974
  57. Blagova OV, Kogan EA, Lutokhina YA, et al. Subacute and chronic post-covid myoendocarditis: clinical presentation, role of coronavirus persistence and autoimmune mechanisms. Kardiologiia. 2021;61(6):11–27. doi: 10.18087/cardio.2021.6.n1659
  58. Huang L, Zhao P, Tang D, et al. cardiac involvement in patients recovered from COVID-2019 identified using magnetic resonance imaging. JACC Cardiovasc Imaging. 2020;13(11):2330–2339. doi: 10.1016/j.jcmg.2020.05.004
  59. Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570
  60. Khokhlov L, Khokhlov R, Lipovka S, et al. Cardiac injury described by contrast-enhanced cardiac magnetic resonance imaging in patients recovered from COVID-19. J Am Coll Cardiol. 2022;79(9):2100. doi: 10.1016/S0735-1097(22)03091-1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. The pattern of heart damage according to magnetic resonance imaging with contrast enhancement in patients who underwent COVID-19 in the form of a Venn diagram with the allocation of the most typical clusters of signs. EF — ejection fraction; LV — left ventricle; RV — right ventricle; EC — early contrast; LC — late contrast

Download (236KB)

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».