Immunotropic Properties of Polysaccharides Isolated From the Shoots of Alma-Ata Hawthorn (Crataegus almaatensis Pojark.) and Soft Hawthorn (Crataegus submollis Sarg.)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background: Interest in the study of polysaccharides derived from higher plants is due to their high biological activity coupled with low toxicity. Polysaccharides and oligosaccharides extracted from the fruits and flowers of various hawthorn species (Crataegus spp.) exhibit diverse effects, including anticoagulant and hypolipidemic activities, as well as antioxidant and probiotic properties. Therefore, the study of the immunomodulatory properties of polysaccharides derived from the shoots of Alma-Ata hawthorn (Crataegus almaatensis Pojark.) and soft hawthorn (Crataegus submollis Sarg.) is of particular interest.

Aim: The work aimed to study the immunotropic effects of water-soluble polysaccharides derived from the shoots of Alma-Ata hawthorn (Crataegus almaatensis Pojark.) and soft hawthorn (Crataegus submollis Sarg.).

Methods: Water-soluble polysaccharides were derived from the shoots of Alma-Ata hawthorn and soft hawthorn by extraction followed by filtration, dialysis, and lyophilization. The water-soluble polysaccharides were injected intraperitoneally to C57BL/6 mice at a dose of 10 mg/kg; animals in the control group received 0.9% sodium chloride solution, and the comparison group received glucosaminylmuramyl dipeptide at a dose of 20 µg/kg for 10 days. The effects of the water-soluble polysaccharides on humoral and cell-mediated immune responses induced by sheep red blood cell immunization were evaluated. In in vitro experiments, water-soluble polysaccharides were added to the culture medium at a concentration of 20 µg/mL, and the production of IL-1β, TNF-α, and NO, arginase activity, cell proliferation in cultures of peritoneal macrophages, and the production of IL-2 and IFN-γ by cultures of mouse splenocytes were assessed.

Results: Course administration of water-soluble polysaccharides derived from the shoots of Alma-Ata hawthorn and soft hawthorn stimulated the humoral immune response in experimental animals and did not affect the cell-mediated immune response. Addition of the polysaccharides derived from the shoots of Alma-Ata hawthorn and soft hawthorn to the culture medium increased the production of IL-1β and TNF-α, enhanced nitric oxide synthase activity, reduced arginase induction in macrophages, and increased both spontaneous IL-2 secretion and stimulated IFN-γ production by splenocytes from C57BL/6 mice.

Conclusions: Administration of water-soluble polysaccharides derived from the shoots of Alma-Ata hawthorn and soft hawthorn resulted in an increased number of antibody-forming cells after immunization with sheep red blood cells and enhanced production of IL-1β, TNF-α, and NO by macrophages and IL-2 and IFN-γ by splenocytes from C57BL/6 mice. The studied polysaccharide samples showed no cytotoxicity against macrophages.

About the authors

Eugeny Yu. Sherstoboev

Goldberg Research Institute of Pharmacology and Regenerative Medicine—branch of the Tomsk National Research Medical Center, Russian Academy of Science

Author for correspondence.
Email: sherstoboev_eu@pharmso.ru
ORCID iD: 0000-0002-6178-5329
SPIN-code: 9987-8435

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Tomsk

Alexander D. Girin

Goldberg Research Institute of Pharmacology and Regenerative Medicine—branch of the Tomsk National Research Medical Center, Russian Academy of Science

Email: sanya.girin.90@yandex.kz
ORCID iD: 0009-0005-0840-9569
Russian Federation, Tomsk

Eugenia S. Trofimova

Goldberg Research Institute of Pharmacology and Regenerative Medicine—branch of the Tomsk National Research Medical Center, Russian Academy of Science; Siberian State Medical University

Email: eugenie76@mail.ru
ORCID iD: 0000-0002-5367-715X
SPIN-code: 5093-4325

MD, Dr. Sci. (Medicine)

Russian Federation, Tomsk; Tomsk

Anastasiya A. Ligacheva

Goldberg Research Institute of Pharmacology and Regenerative Medicine—branch of the Tomsk National Research Medical Center, Russian Academy of Science

Email: vitelli@mail.ru
ORCID iD: 0000-0002-3337-1516
SPIN-code: 5622-4069

Cand. Sci. (Biology)

Russian Federation, Tomsk

Marina G. Danilets

Goldberg Research Institute of Pharmacology and Regenerative Medicine—branch of the Tomsk National Research Medical Center, Russian Academy of Science

Email: m.danilets@mail.ru
ORCID iD: 0000-0001-7862-4778
SPIN-code: 6952-3132

Dr. Sci. (Biology)

Russian Federation, Tomsk

Natalia S. Selivanova

Goldberg Research Institute of Pharmacology and Regenerative Medicine—branch of the Tomsk National Research Medical Center, Russian Academy of Science; Siberian State Medical University

Email: selivan.ns@gmail.com
ORCID iD: 0009-0006-6218-3051
SPIN-code: 5775-5878
Russian Federation, Tomsk; Tomsk

Ekaterina I. Gulina

Siberian State Medical University

Email: e.gulina1@gmail.com
ORCID iD: 0000-0002-3234-6845
SPIN-code: 9062-9242

Cand. Sci. (Pharmacy)

Russian Federation, Tomsk

Anastasia N. Saveleva

Siberian State Medical University

Email: violet.feel.2000@mail.ru
ORCID iD: 0009-0009-5726-9610
Russian Federation, Tomsk

Natalya V. Kudashkina

Bashkir State Medical University

Email: phytoart@mail.ru
ORCID iD: 0000-0002-0280-143X
SPIN-code: 4256-5502

Dr. Sci. (Pharmacy), Professor

Russian Federation, Ufa

Svetlana R. Khasanova

Bashkir State Medical University

Email: svet-khasanova@yandex.ru
ORCID iD: 0000-0001-7000-8014
SPIN-code: 7027-0676

Dr. Sci. (Pharmacy), Professor

Russian Federation, Ufa

Mikhail V. Belousov

Siberian State Medical University

Email: mvb63@mail.ru
ORCID iD: 0000-0002-2153-7945
SPIN-code: 8185-8117

Dr. Sci. (Pharmacy), Professor

Russian Federation, Tomsk

References

  1. Christensen K. Revision of crataegus sect. Crataegus and nothosect. Crataeguineae (Rosaceae-Maloideae) in the old world. Syst Botany Monogr. 1992;35:1–199. doi: 10.2307/25027810
  2. Attard E, Attard H. Chapter 3.25 – Hawthorn: Crataegus oxyacantha, Crataegus monogyna and related species. In: Nabavi SM, Silva AS, editors. Nonvitamin and nonmineral nutritional supplements. Academic Press; 2019. P. 289–293. doi: 10.1016/B978-0-12-812491-8.00041-2
  3. Guo W, Shao T, Peng Y, et al. Chemical composition, biological activities, and quality standards of hawthorn leaves used in traditional Chinese medicine: a comprehensive review. Front Pharmacol. 2023;14:1275244. doi: 10.3389/fphar.2023.1275244.
  4. Bahri-Sahloul R, Ben Fredj R, Boughalleb N, et al. Phenolic composition and antioxidant and antimicrobial activities of extracts obtained from Crataegus azarolus L. var. aronia (Willd.) Batt. ovaries calli. J Botany. 2014;2014:623651. doi: 10.1155/2014/623651
  5. Li T, Fu S, Huang X, et al. Biological properties and potential application of hawthorn and its major functional components: A review. J Funct Foods. 2022;90:104988. doi: 10.1016/j.jff.2022.104988
  6. Nazhand A, Lucarini M, Durazzo A, et al. Hawthorn (Crataegus spp.): An updated overview on its beneficial properties. Forests. 2020;11(5):564. doi: 10.3390/f11050564
  7. Kumar D, Arya V, Bhat ZA, et al. The genus Crataegus: chemical and pharmacological perspectives. Rev Bras Farmacogn. 2012;22(5):1187–1200. doi: 10.1590/S0102-695X2012005000094
  8. Edwards JE, Brown PN, Talent N, et al. A review of the chemistry of the genus Crataegus. Phytochemistry. 2012;79:5–26. doi: 10.1016/j.phytochem.2012.04
  9. Pawlaczyk-Graja I. Polyphenolic-polysaccharide conjugates from flowers and fruits of single-seeded hawthorn (Crataegus monogyna Jacq.): chemical profiles and mechanisms of anticoagulant activity. Int J Biol Macromol. 2018;116:869–879. doi: 10.1016/j.ijbiomac.2018.05.101
  10. Zhang S, Zhang C, Li M, et al. Structural elucidation of a glucan from Crataegus pinnatifida and its bioactivity on intestinal bacteria strains. Int J Biol Macromol. 2019;128:435–443. doi: 10.1016/j.ijbiomac.2019.01.158
  11. Rjeibi I, Zaabi R, Jouida W. Characterization of polysaccharides extracted from pulps and seeds of Crataegus azarolus L. var. aronia: Preliminary structure, antioxidant, antibacterial, α-amylase, and acetylcholinesterase inhibition properties. Oxid Med Cell Longev. 2020;2020:1903056. doi: 10.1155/2020/1903056
  12. Pakhomova MG, editor. Identifier of plants of Central Asia. Vol. 5. Institute of Botany of the Academy of Sciences of the Uzbek SSR; 1976. 274 p. (In Russ.)
  13. Krivoshchekov SV, Isakov DA, Guryev AM, Belousov MV. Standardization of a pharmaceutical substance with hypocholesterolemic activity basedon birch leaves polysaccharides. Bashkortostan Medical Journal. 2022;17(5):48–52. EDN: SOXGWU
  14. Gulina EI, Zykova AV, Ligacheva AA, et al. Chemical characterization of the Saussurea salicifolia L. polysaccharide complex and its NO-stimulating properties. Russian Journal Bioorganic Chemistry. 2024;50:2773–2780. doi: 10.1134/S1068162024070203
  15. Green LC, Wagner DA, Glogowski J, et al. Analysis of nitrate, nitrite and [15N] nitrite in biological fluids. Anal Biochem. 1982;126(1):131–143. doi: 10.1016/0003-2697(82)90118-х
  16. Danilets MG, Guryev AM, Belskaya NV, et al. Effect of plant polysaccharides on NO synthase and arginase in mouse macrophages. Journal of Ural Medical Academic Science. 2009;(2):49–50. EDN: QZFMRJ (In Russ.)
  17. Munder M, Eichmann K, Modolell M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol. 1998;60(11):5347–5354. doi: 10.4049/jimmunol.160.11.5347
  18. Mosmann TR. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immnol Methods. 1983;5(1–2):55–63. doi: 10.1016/0022-1759(83)90303-4
  19. Mohammed ASA, Naveed M, Jost N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). J Polym Environ. 2021;29(8):2359–2371. doi: 10.1007/s10924-021-02052-2
  20. Sindhu RK, Goyal A, Das J, et al. Immunomodulatory potential of polysaccharides derived from plants and microbes: A narrative review. Carbohydr Polym Tech Appl. 2021;2:100044. doi: 10.1016/j.carpta.2021.100044
  21. Kouakou K, Schepetkin IA, Yapi A, et al. Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia. J Ethnopharmacol. 2013;146(1):232–242. doi: 10.1016/j.jep.2012.12.037
  22. Teng L, Fu H, Deng C, et al. Modulating the SDF-1/CXCL12-induced cancer cell growth and adhesion by sulfated K5 polysaccharides in vitro. Biomed Pharmacother. 2015;73:29–34. doi: 10.1016/j.biopha.2015.05.009
  23. Wei W, Xiao HT, Bao WR, et al. TLR-4 may mediate signaling pathways of Astragalus polysaccharide RAP induced cytokine expression of RAW264.7 cells. J Ethnopharmacol. 2016;179:243–252. doi: 10.1016/j.jep.2015.12.060
  24. Ibiza S, Serrador JM. The role of nitric oxide in the regulation of adaptive immune responses. Inmunología. 2008;27(3):103–117. doi: 10.1016/S0213-9626(08)70058-1
  25. Palmieri EM, McGinity C, Wink DA, McVicar DW. Nitric oxide in macrophage immunometabolism: Hiding in plain sight. Metabolites. 2020;10(11):429. doi: 10.3390/metabo10110429
  26. Chen Y, Li H, Li M, et al. Salvia miltiorrhiza polysaccharide activates T Lymphocytes of cancer patients through activation of TLRs mediated-MAPK and -NF-κB signaling pathways. J Ethnopharmacol. 2017;200:165–173. doi: 10.1016/j.jep.2017.02.029
  27. Chen L, Huang G. Antitumor activity of polysaccharides: an overview. Curr Drug Targets. 2018;19(1):89–96. doi: 10.2174/1389450118666170704143018
  28. Wei J, Dai Y, Zhang N, et al. Natural plant-derived polysaccharides targeting macrophage polarization: a promising strategy for cancer immunotherapy. Front Immunol. 2024;15:1408377. doi: 10.3389/fimmu.2024.1408377

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).