Melatonin in the pathogenesis and treatment of metabolic liver diseases
- Authors: Ovanesov K.B.1, Bakulina N.V.1
-
Affiliations:
- North-Western State Medical University named after I.I. Mechnikov
- Issue: Vol 23, No 4 (2025)
- Pages: 337-349
- Section: Reviews
- URL: https://bakhtiniada.ru/RCF/article/view/380256
- DOI: https://doi.org/10.17816/RCF683407
- EDN: https://elibrary.ru/KVRCJJ
- ID: 380256
Cite item
Abstract
The most prevalent chronic liver diseases are metabolic disorders, which lead to the development of the so-called nonalcoholic fatty liver disease (renamed metabolic dysfunction–associated steatotic liver disease in 2020) with subsequent progression from steatosis, steatohepatitis, and fibrosis to cirrhosis and hepatocellular carcinoma. The disease is more common in developed countries and, according to some estimates, affects approximately one third of the global population. Metabolic dysfunction–associated fatty liver disease is recognized worldwide as the leading cause of chronic liver disease, which remains asymptomatic in many patients and is often diagnosed incidentally. The disease is typically comorbid with obesity, type 2 diabetes mellitus, dyslipidemia, atherosclerosis, and other cardiovascular disorders. Key pathogenetic factors include oxidative stress followed by hepatocyte apoptosis, insulin resistance, cytokine imbalance, mitochondrial dysfunction, impaired autophagy, and other abnormalities that promote the development of inflammatory processes. The disease pathogenesis is complex and not fully understood. Current hypotheses do not fully elucidate the relationships among the individual pathogenetic mechanisms. The management of metabolic dysfunction–associated fatty liver disease is challenging and is primarily aimed at correcting insulin resistance, hepatoprotection, and reducing the risks of progression of associated comorbidities. To date, no unified disease-specific pharmacological strategies have been developed. From a pharmacotherapeutic perspective, melatonin has attracted increasing attention in recent years owing to its capacity to alleviate most of the manifestations of the metabolic syndrome. This review summarizes experimental data and clinical experience regarding the use of melatonin (an indole compound synthesized in the pineal gland) for the correction of metabolic dysfunction of the liver. Melatonin is capable of controlling many physiological processes in hepatic tissue both through activation of its specific receptors and through direct modulation of intracellular pathways, thereby exerting a broad modulatory effect. In experimental models across various animal species, melatonin has demonstrated pronounced hepatoprotective activity. A considerable advantage of melatonin is its ability to alleviate emotional disturbances characteristic of chronic conditions (including anxiety, depressive symptoms, and insomnia). The accumulated evidence has already facilitated the introduction of melatonin into clinical practice and supports further expansion of its applications in hepatic diseases.
About the authors
Karen B. Ovanesov
North-Western State Medical University named after I.I. Mechnikov
Author for correspondence.
Email: ovanesov2007@mail.ru
ORCID iD: 0000-0001-7325-8027
SPIN-code: 1598-9971
MD, Dr. Sci. (Medicine)
Russian Federation, Saint PetersburgNatalia V. Bakulina
North-Western State Medical University named after I.I. Mechnikov
Email: Natalya.Bakulina@szgmu.ru
ORCID iD: 0000-0003-4075-4096
SPIN-code: 9503-8950
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint PetersburgReferences
- Acuña-Castroviejo D, Escames G, Venegas C, et al. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci. 2014;71(16):2997–3025. doi: 10.1007/s00018-014-1579-2
- Konturek SJ, Konturek PC, Brzozowska I, et al. Localization and biological activities of melatonin in intact and diseased gastrointestinal tract (GIT). J Physiol Pharmacol. 2007;58(3):381–405.
- Kvetnoy IM. Extrapineal melatonin: location and role within diffuse neuroendocrine system. Histochem J. 1999;31(1):1–12. doi: 10.1023/a:1003431122334
- Arushanyan EB, Baturin VA, Ovanesov KB. Fundamentals of chronomedicine and chronopharmocology. Stavropol: Stavropol State Medical University; 2016. P. 148. ISBN: 978-5-89822-436-3 (In Russ.)
- Arushanyan EB, Beyer EV. Melatonin: biology, pharmacology, clinic. Stavropol: Stavropol State Medical University; 2015. ISBN: 978-5-89822-400-4 (In Russ.)
- Wajid F, Poolacherla R, Mim FK, et al. Therapeutic potential of melatonin as a chronobiotic and cytoprotective agent in diabetes mellitus. J Diabetes Metab Disord. 2020;19(2):1797–1825. doi: 10.1007/s40200-020-00585-2
- Patel R, Parmar N, Pramanik Palit S, et al. Diabetes mellitus and melatonin: Where are we? Biochimie. 2022;202:2–14. doi: 10.1016/j.biochi.2022.01.001
- Zhu H, Zhao Z-j, Liu H-y, et al. The melatonin receptor 1B gene links circadian rhythms and type 2 diabetes mellitus: an evolutionary story. Ann Med. 2023;55(1):1262–1286. doi: 10.1080/07853890.2023.2191218
- Karamitri A, Jockers R. Melatonin in type 2 diabetes mellitus and obesity. Nat Rev Endocrinol. 2019;15(2):105–125. doi: 10.1038/s41574-018-0130-1
- Gao X, Sun H, Wei Y, et al. Protective effect of melatonin against metabolic disorders and neuropsychiatric injuries in type 2 diabetes mellitus mice. Phytomedicine. 2024;131:155805. doi: 10.1016/j.phymed.2024.155805
- Mori N, Aoyama H, Murase T, Mori W. Anti-hypercholesterolemic effect of melatonin in rats. Acta Pathol Jpn. 1989;39(10):613–618. doi: 10.1111/j.1440-1827.1989.tb02407.x
- Hoyos M, Guerrero JM, Perez-Cano R, et al. Serum cholesterol and lipid peroxidation are decreased by melatonin in diet-induced hypercholesterolemic rats. J Pineal Res. 2000;28(3):150–155. doi: 10.1034/j.1600-079x.2001.280304.x
- Glaser S, Han Y, Francis H, Alpini G. Melatonin regulation of biliary functions. Hepatobiliary Surg Nutr. 2014;3(1):35–43. doi: 10.3978/j.issn.2304-3881.2013.10.04
- Hall C, Sato K, Wu N, et al. Regulators of cholangiocyte proliferation. Gene Expr. 2017;17(2):155–171. doi: 10.3727/105221616X692568
- Reiter RJ, Rosales-Corral SA, Manchester LC, et al. Melatonin in the biliary tract and liver: health implications. Curr Pharm Des. 2014;20(30): 4788–4801. doi: 10.2174/1381612819666131119105826.
- Barmoudeh Z, Fouani MH, Moslemi Z, et al. Melatonin and metformin co-loaded nanoliposomes efficiently attenuate liver damage induced by bile duct ligation in rats. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(1):395–410. doi: 10.1007/s00210-023-02613-3
- Aktas C, Kanter M, Erboga M, et al. Melatonin attenuates oxidative stress, liver damage and hepatocyte apoptosis after bile-duct ligation in rats. Toxicol Ind Health. 2014;30(9):835–844. doi: 10.1177/0748233712464811
- Houdek P, Nováková M, Polidarová L, et al. Melatonin is a redundant entraining signal in the rat circadian system. Horm Behav. 2016;83:1–5. doi: 10.1016/j.yhbeh.2016.05.006
- Venegas C, García JA, Doerrier C, et al. Analysis of the daily changes of melatonin receptors in the rat liver. J Pineal Res. 2013;54(3):313–321. doi: 10.1111/jpi.12019
- Arushanyan EB. Limitation of oxidative stress as the main cause of the universal protective properties of melatonin. Experimental and clinical pharmacology. 2012;75(5):44–49. EDN: SZXFZN
- Korkmaz A, Reiter RJ, Topal T, et al. Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med. 2009;15(1–2):43–50. doi: 10.2119/molmed.2008.00117
- Peschke E, Bähr I, Mühlbauer E. Experimental and clinical aspects of melatonin and clock genes in diabetes. J Pineal Res. 2015;59(1):1–23. doi: 10.1111/jpi.12240
- Sudnikovich EJ, Maksimchik YZ, Zabrodskaya SV, et al. Melatonin attenuates metabolic disorders due to streptozotocin-induced diabetes in rats. Eur J Pharmacol. 2007;569(3):180–187. doi: 10.1016/j.ejphar.2007.05.018
- Akmali M, Ahmadi R, Vessal M. Pre- and post-treatment of streptozocin administered rats with melatonin: effects on some hepatic enzymes of carbohydrate metabolism. Arch Iran Med. 2010;13(2):105–110. PMID: 20187663
- Song J, Whitcomb DJ, Kim BC. The role of melatonin in the onset and progression of type 3 diabetes. Mol Brain. 2017;10(1):35. doi: 10.1186/s13041-017-0315-x.
- Fan R, Peng X, Xie L, et al. Importance of Bmal1 in Alzheimer’s disease and associated aging-related diseases: Mechanisms and interventions. Aging Cell. 2022;21(10):e13704. doi: 10.1111/acel.13704
- Maev IV, Andreev DN, Kucheryavyy YA. Metabolically associated fatty liver disease — a disease of the 21st century. Consilium Medicum. 2022;24(5):325–332. doi: 10.26442/20751753.2022.5.201532 EDN: JRAQZW
- Celinski K, Konturek PC, Slomka M, et al. Effects of treatment with melatonin and tryptophan on liver enzymes, parameters of fat metabolism and plasma levels of cytokines in patients with non-alcoholic fatty liver disease-14 months follow up. J Physiol Pharmacol. 2014;65(1):75–82
- Terziev D, Terzieva D. Experimental data on the role of melatonin in the pathogenesis of nonalcoholic fatty liver disease. Biomedicines. 2023;11(6):1722. doi: 10.3390/biomedicines11061722
- Chen X, Zhang C, Zhao M, et al. Melatonin alleviates lipopolysaccharide-induced hepatic SREBP-1c activation and lipid accumulation in mice. J Pineal Res. 2011;51(4):416–425. doi: 10.1111/j.1600-079X.2011.00905.x
- Ou T-H, Tung Y-T, Yang T-H, Chien Y-W. Melatonin improves fatty liver syndrome by inhibiting the lipogenesis pathway in hamsters with high-fat diet-induced hyperlipidemia. Nutrients. 2019;11(4):748. doi: 10.3390/nu11040748
- Li D-j, Tong J, Li Y-H, et al. Melatonin safeguards against fatty liver by antagonizing TRAFs-mediated ASK1 deubiquitination and stabilization in a β-arrestin-1 dependent manner. J Pineal Res. 2019;67(4):e12611. doi: 10.1111/jpi.12611
- Sun G, Wang Y, Yang L, et al. Rebalancing liver-infiltrating CCR3+ and CD206+ monocytes improves diet-induced NAFLD. Cell Rep. 2023;42(7):112753. doi: 10.1016/j.celrep.2023.112753
- Stacchiotti A, Favero G, Lavazza A, et al. Hepatic macrosteatosis is partially converted to microsteatosis by melatonin supplementation in ob/ob mice non-alcoholic fatty liver disease. PLoS One. 2016;11(1):e0148115. doi: 10.1371/journal.pone.0148115
- Yu Y, Chen D, Zhao Y, et al. Melatonin ameliorates hepatic steatosis by inhibiting NLRP3 inflammasome in db/db mice. Int J Immunopathol Pharmacol. 2021;35:20587384211036819. doi: 10.1177/20587384211036819
- Stacchiotti A, Grossi I, García-Gómez R, et al. Melatonin effects on non-alcoholic fatty liver disease are related to microRNA-34a-5p/Sirt1 axis and autophagy. Cells. 2019;8(9):1053. doi: 10.3390/cells8091053
- Zhou H, Du W, Li Y, et al. Effects of melatonin on fatty liver disease: the role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission, and mitophagy. J Pineal Res. 2018;64(1):e12450. doi: 10.1111/jpi.12450
- Ren J, Jin M, You Z-x, et al. Melatonin prevents chronic intermittent hypoxia-induced injury by inducing sirtuin 1-mediated autophagy in steatotic liver of mice. Sleep Breath. 2019;23(3):825–836. doi: 10.1007/s11325-018-1741-4
- Zaitone S, Hassan N, El-Orabi N, El-Awady ES. Pentoxifylline and melatonin in combination with pioglitazone ameliorate experimental non-alcoholic fatty liver disease. Eur J Pharmacol. 2011;662(1–3): 70–77. doi: 10.1016/j.ejphar.2011.04.049
- Ku H, Kim Y, Kim AL, et al. Protective effects of melatonin in high-fat diet-induced hepatic steatosis via decreased intestinal lipid absorption and hepatic cholesterol synthesis. Endocrinol Metab (Seoul). 2023;38(5):557–567. doi: 10.3803/EnM.2023.1672
- Esrefoglu M, Cetin A, Taslidere E, et al. Therapeutic effects of melatonin and quercetin in improvement of hepatic steatosis in rats through suppression of oxidative damage. Bratisl Lek Listy. 2017;118(6):347–354. doi: 10.4149/BLL_2017_066
- Dorranipour D, Pourjafari F, Malekpour-Afshar R, et al. Assessment of melatonin’s therapeutic effectiveness against hepatic steatosis induced by a high-carbohydrate high-fat diet in rats. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(5):2971–2985. doi: 10.1007/s00210-023-02784-z
- Martínez Soriano B, Güemes A, Pola G, et al. Effect of melatonin as an antioxidant drug to reverse hepatic steatosis: experimental model. Can J Gastroenterol Hepatol. 2020;2020:7315253. doi: 10.1155/2020/7315253
- Xu L, Li H, Zhang O, et al. Melatonin alleviates diet-induced steatohepatitis by targeting multiple cell types in the liver to suppress inflammation and fibrosis. J Mol Endocrinol. 2022;70(1):e220075. doi: 10.1530/JME-22-0075
- Miguel FM, Picada JN, da Silva JB, et al. Melatonin attenuates inflammation, oxidative stress, and DNA damage in mice with nonalcoholic steatohepatitis induced by a methionine- and choline-deficient diet. Inflammation. 2022;45(5):1968–1984. doi: 10.1007/s10753-022-01667-4
- Saha M, Manna K, Saha KD. Melatonin suppresses NLRP3 inflammasome activation via TLR4/NF-κB and P2X7R signaling in high-fat diet-induced murine NASH model. J Pineal Res. 2022;15:3235–3258. doi: 10.2147/JIR.S343236
- San-Miguel B, Fernández-Palanca P, Mauriz JL, et al. Beneficial effects of melatonin on liver fibrosis: a systematic review of current biological evidence. J Cell Physiol. 2022;237(7):2740–2757. doi: 10.1002/jcp.30735
- Kim JI, Cheon HG. Melatonin ameliorates hepatic fibrosis via the melatonin receptor 2-mediated upregulation of BMAL1 and anti-oxidative enzymes. Eur J Pharmacol. 2024;966:176337. doi: 10.1016/j.ejphar.2024.176337
- Jie L, Hong R-t, Zhang Y-j, et al. Melatonin alleviates liver fibrosis by inhibiting autophagy. Curr Med Sci. 2022;42(3):498–504. doi: 10.1007/s11596-022-2530-7
- Bai Y, Chen J, Zhang S, et al. Inflammation-responsive cell membrane-camouflaged nanoparticles against liver fibrosis via regulating endoplasmic reticulum stress and oxidative stress. Adv Mater. 2024;36(19):e2310443. doi: 10.1002/adma.202310443
- Liu X, Kang W, Li J, et al. Melatonin ameliorates cadmium-induced liver fibrosis via modulating gut microbiota and bile acid metabolism. J Pineal Res. 2024;76(8):e70005. doi: 10.1111/jpi.70005
- Zhu L, Zhang Q, Hua C, Ci X. Melatonin alleviates particulate matter-induced liver fibrosis by inhibiting ROS-mediated mitophagy and inflammation via Nrf2 activation. Ecotoxicol Environ Saf. 2023;268:115717. doi: 10.1016/j.ecoenv.2023.115717
- Liu Q, Sun Y, Zhu Y, et al. Melatonin relieves liver fibrosis induced by Txnrd3 knockdown and nickel exposure via IRE1/NF-kB/NLRP3 and PERK/TGF-β1 axis activation. Life Sci. 2022;301:120622. doi: 10.1016/j.lfs.2022.120622
- Hu C, Zhao L, Tao J, Li L. Protective role of melatonin in early-stage and end-stage liver cirrhosis. J Cell Mol Med. 2019;23(11): 7151–7162. doi: 10.1111/jcmm.14634
- Rafiq H, Ayaz M, Khan HA, et al. Therapeutic potential of stem cell and melatonin on the reduction of CCl4-induced liver fibrosis in experimental mice model. Braz J Biol. 2022;84. doi: 10.1590/1519-6984.253061
- Elzainy A, El Sadik A, Altowayan WM. Comparison between the regenerative and therapeutic impacts of bone marrow mesenchymal stem cells and adipose mesenchymal stem cells pre-treated with melatonin on liver fibrosis. Biomolecules. 2024;14(3):297. doi: 10.3390/biom14030297
- Sun J, Bian Y, Ma Y, et al. Melatonin alleviates cadmium-induced nonalcoholic fatty liver disease in ducks by alleviating autophagic flow arrest via PPAR-α and reducing oxidative stress. Poult Sci. 2023;102(8):102835. doi: 10.1016/j.psj.2023.102835
- Saha M, Das S, Manna K, Saha K. Melatonin targets ferroptosis through bimodal alteration of redox environment and cellular pathways in NAFLD model. Biosci Rep. 2023;43(10):bsr20230128. doi: 10.1042/bsr20230128
- Guan Q, Wang Z, Hu K, et al. Melatonin ameliorates hepatic ferroptosis in NAFLD by inhibiting ER stress via the MT2/cAMP/PKA/IRE1 signaling pathway. Int J Biol Sci. 2023;19(12):3937–3950. doi: 10.7150/ijbs.85883
- Srinivasan V, Ohta Y, Espino J, et al. Metabolic syndrome, its pathophysiology and the role of melatonin. Recent patents on endocrine. Metabol Immune Drug Discov. 2012;7(1):11–25. doi: 10.2174/1872214811307010011
- Tsai C-C, Lin Y-J, Yu H-R, et al. Melatonin alleviates liver steatosis induced by prenatal dexamethasone exposure and postnatal high fat diet. Exp Ther Med. 2018;16(2):917–924. doi: 10.3892/etm.2018.6256
- Chen C-L, Lin Y-C. Autophagy dysregulation in metabolic associated fatty liver disease: A new therapeutic target. Int J Mol Sci. 2022;23(17):10055. doi: 10.3390/ijms231710055
- Teunis C, Nieuwdorp M, Hanssen N. Interactions between tryptophan metabolism, the gut microbiome and the immune system as potential drivers of non-alcoholic fatty liver disease (NAFLD) and metabolic diseases. Metabolites. 2022;12(6):514. doi: 10.3390/metabo12060514
- Munhos Hermoso DA, Campos Shimada LB, Gilglioni EH, et al. Melatonin protects female rats against steatosis and liver oxidative stress induced by oestrogen deficiency. Life Sci. 2016;157:178–186. doi: 10.1016/j.lfs.2016.05.044
- Esteban-Zubero E, García-Gil FA, López-Pingarrón L, et al. Melatonin role preventing steatohepatitis and improving liver transplantation results. Cell Mol Life Sci. 2016;73(15):2911–2927. doi: 10.1007/s00018-016-2185-2
- Gim S-A, Koh P-O. Melatonin attenuates hepatic ischemia through mitogen-activated protein kinase signaling. J Surg Res. 2015;198(1):228–236. doi: 10.1016/j.jss.2015.05.043
- Kang J-W, Koh E-j, Lee S-M. Melatonin protects liver against ischemia and reperfusion injury through inhibition of toll-like receptor signaling pathway. J Pineal Res. 2011;50(4):403–411. doi: 10.1111/j.1600-079x.2011.00858.x
- Kireev R, Bitoun S, Cuesta S, et al. Melatonin treatment protects liver of Zucker rats after ischemia/reperfusion by diminishing oxidative stress and apoptosis. Eur J Pharmacol. 2013;701(1–3):185–193. doi: 10.1016/j.ejphar.2012.11.038
- Sheen J-M, Chen Y-C, Hsu M-H, et al. Melatonin alleviates liver apoptosis in bile duct ligation young rats. Int J Mol Sci. 2016;17(8):1365–1365. doi: 10.3390/ijms17081365
- Esteban-Zubero E, Alatorre-Jiménez MA, López-Pingarrón L, et al. Melatonin’s role in preventing toxin-related and sepsis-mediated hepatic damage: A review. Pharmacol Res. 2016;105:108–120. doi: 10.1016/j.phrs.2016.01.018
- Goc Z, Szaroma W, Kapusta E, Dziubek K. Protective effects of melatonin on the activity of SOD, CAT, GSH-Px and GSH content in organs of mice after administration of SNP. Chin J Physiol. 2017;60(1):1–10. doi: 10.4077/CJP.2017.BAF435
- Han Y, Chen L, Baiocchi L, et al. Circadian rhythm and melatonin in liver carcinogenesis: Updates on current findings. Crit Rev Oncogen. 2021;26(3):69–85. doi: 10.1615/critrevoncog.2021039881
- Joshi A, Upadhyay KK, Vohra A, et al. Melatonin induces Nrf2-HO-1 reprogramming and corrections in hepatic core clock oscillations in Non-alcoholic fatty liver disease. FASEB J. 2021;35(9):e21803. doi: 10.1096/fj.202002556RRR
- Sohrabi M, Gholami A, Amirkalali B, et al. Is melatonin associated with pro-inflammatory cytokine activity and liver fibrosis in non-alcoholic fatty liver disease (NAFLD) patients? Gastroenterol Hepatol Bed Bench. 2021;14(3):229–236.
- Sohrabi M, Gholami A, Taheri M, et al. Melatonin levels in patients with nonalcoholic fatty liver disease compared with healthy individuals according to fibrosis level. Middle East J Dig Dis. 2021;13(2):109–114. doi: 10.34172/mejdd.2021.213
- Sohrabi M, Ajdarkosh H, Gholami A, et al. Association between melatonin value and interleukins1B, -18, and -33 Levels in patients with different stages of non-alcoholic fatty liver disease. Middle East J Dig Dis. 2022;14(1):110–117. doi: 10.34172/mejdd.2022.263
- Tan Y, Zhao N, Xie Q, et al. Melatonin attenuates cholestatic liver injury via inhibition of the inflammatory response. Mol Cell Biochem. 2023;478(11):2527–2537. doi: 10.1007/s11010-023-04682-7
- Abdi S, Abbasinazari M, Ataei S, et al. Benefits and risks of melatonin in hepatic and pancreatic disorders; A review of clinical evidences. Iran J Pharm Res. 2021;20(3):102–109. doi: 10.22037/ijpr.2020.114477.14872
- Akhavan Rezayat A, Ghasemi Nour M, Bondarsahebi Y, et al. The effects of melatonin therapy on the treatment of patients with Non-alcoholic steatohepatitis: A systematic review and Meta-analysis on clinical trial studies. Eur J Pharm. 2021;905:174154. doi: 10.1016/j.ejphar.2021.174154
- Mansoori A, Salimi Z, Hosseini SA, et al. The effect of melatonin supplementation on liver indices in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized clinical trials. Complement Ther Med. 2020;52:102398. doi: 10.1016/j.ctim.2020.102398
- Gonciarz M, Gonciarz Z, Bielanski W, et al. The effects of long-term melatonin treatment on plasma liver enzymes levels and plasma concentrations of lipids and melatonin in patients with nonalcoholic steatohepatitis: a pilot study. J Physiol Pharmacol. 2012;63(1):35–40.
- Pakravan H, Ahmadian M, Fani A, et al. The effects of melatonin in patients with nonalcoholic fatty liver disease: a randomized controlled trial. Adv Biomed Res. 2017;6(1):40. doi: 10.4103/2277-9175.204593
- Bahrami M, Cheraghpour M, Jafarirad S, et al. The effect of melatonin on treatment of patients with non-alcoholic fatty liver disease: a randomized double blind clinical trial. Complement Ther Med. 2020;52:102452. doi: 10.1016/j.ctim.2020.102452
- Marjot T, Ray DW, Williams FR, et al. Sleep and liver disease: a bidirectional relationship. Lancet Gastroenterol Hepatol. 2021;6(10):850–863. doi: 10.1016/S2468-1253(21)00169-2
- Ji Y, Elkin K, Yip J, et al. From circadian clocks to non-alcoholic fatty liver disease. Exp Rev Gastroenterol Hepatol. 2019;13(11): 1107–1112. doi: 10.1080/17474124.2019.1684899
- Abdel Jaleel GA, Al-Awdan SA, Ahmed RF, et al. Melatonin regulates neurodegenerative complications associated with NAFLD via enhanced neurotransmission and cellular integrity: a correlational study. Metabol Brain Dis. 2020;35(8):1251–1261. doi: 10.1007/s11011-020-00593-4
- Arushanyan EB, Ovanesov KB. Peculiarities of psychotropic effect of melatonin depending on dose and time of the day. Pharmacology and toxicology. 1989;52(6):33–37. EDN: SGKXHP
- Ovanesov KB, Shabanov PD. Assessment of retinal photosensitivity as an objective indicator of expression psychodense effect. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(2): 211–220. doi: 10.17816/RCF192211-220 EDN: NYPREG
- Ovanesov KB, Shabanov PD. Retina photosensitivity indexes as an objective indicator of expression of psychostimulating effect. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(3): 313–326. doi: 10.17816/RCF193313-326 EDN: WJLVVU
- Arushanyan EB, Ovanesov KB, Ovanesova IM. Comparative action of melatonin and bilobil on light perception and some psychophysiological indices in patients with cerebral trauma anamnesis. Experimental and clinical pharmacology. 2007;70(2):20–23. EDN: TNJCMT
