“Old” and current antimalarial drugs, mechanism of action, significance of fever and therapeutic hyperthermia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is reported that according to WHO report (2020), more than 229 million people in 87 countries have malaria despite the use of antimalarial drugs. Moreover, modern combination therapy cannot exclude this disease either. The fact is that malaria pathogens, as well as pathogens of other infectious diseases, gradually acquire resistance to anti-infective drugs. And such resistance of parasites to antimalarial drugs increases with increasing duration of use of these drugs in the community. In other words, antimalarial drugs used in the treatment and prevention of malaria are not only factors in the treatment and prevention of malaria, but gradually acquire the role of factors affecting the “natural” selection of pathogens. It is with the help of applied antimalarial drugs that parasites gradually adapt to existence in the organism of malaria patients, trying to survive despite the availability of drugs. It is shown that the intensity of mutations of malaria pathogens in their population, parasite load, choice of antimalarial drugs, accounting and control of antimalarial activity of the drugs used, the effectiveness and safety of the drugs used, their single and course doses, the effectiveness of individual course antimalarial therapy and control of drug-parasite interaction are the main factors in the effectiveness of treatment and prevention of malaria, as well as the factors of drug resistance of parasites. The review reiterates the importance of knowledge of the basic metabolism and life cycle of both parasite and host in understanding the mechanism of drug action and drug resistance in parasites. This knowledge is very important for the selection of new drug targets for the search and development of new antimalarial drugs. It is reported that fever, diurnal rhythm of body temperature, and therapeutic hyperthermia are not only factors in preventing infection, keeping patients healthy, and the course of malaria, but also factors in the mechanism of action of antimalarial drugs, the efficacy of drug therapy for infection, and the resistance of malaria pathogens to antimalarial drugs.

About the authors

Johra Khan

Majmaah University

Email: j.khan@mu.edu.sa
ORCID iD: 0000-0002-0044-4758
Saudi Arabia, Al Majmaah

Mithun Rudrapal

School of Biotechnology and Pharmaceutical Sciences Vignan’s Foundation for Science, Technology & Research

Email: drmr_pharma@vignan.ac.in
ORCID iD: 0000-0002-8172-6633

MD, Dr. Sci. (Medicine), Professor

India, Vadlamudi, Guntur

Aleksandr L. Urakov

Izhevsk State Medical Academy

Author for correspondence.
Email: urakoval@live.ru
ORCID iD: 0000-0002-9829-9463
SPIN-code: 1613-9660

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Izhevsk

References

  1. Josling GA, Russell TJ, Venezia J, et al. Dissecting the role of PfAP2-G in malaria gametocytogenesis. Nat Commun. 2020; 11(1):1–13. doi: 10.1038/s41467-020-15026-0 EDN: EGZFKE
  2. Imwong M, Dhorda M, Tun KM, et al. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study. Lancet Infect Dis. 2020;20(12):1470–1480. doi: 10.1016/S1473-3099(20)30228-0 EDN: XAGVSD
  3. Meibalan E, Marti M. Biology of malaria transmission. Cold Spring Harb Perspect Med. 2017;7(3):a025452. doi: 10.1101/cshperspect.a025452 EDN: YYADXP
  4. Eikenberry SE, Gumel AB. Mathematical modeling of climate change and malaria transmission dynamics: a historical review. J Math Biol. 2018;77(4):857–933. doi: 10.1007/s00285-018-1229-7 EDN: YHUYCL
  5. Alout H, Roche B, Dabiré RK, Cohuet A. Consequences of insecticide resistance on malaria transmission. PLoS Pathog. 2017;13(9):e1006499. doi: 10.1371/journal.ppat.1006499
  6. Matthews KA, Senagbe KM, Nötzel C, et al. Disruption of the Plasmodium falciparum life cycle through transcriptional reprogramming by inhibitors of Jumonji demethylases. ACS Infect Dis. 2020;6(5): 1058–1075. doi: 10.1021/acsinfecdis.9b00455 EDN: HQIMHK
  7. Li X, Kumar S, McDew-White M, et al. Genetic mapping of fitness determinants across the malaria parasite Plasmodium falciparum life cycle. PLoS Genet. 2019;15(10):e1008453. doi: 10.1371/journal.pgen.1008453
  8. Bancells C, Llorà-Batlle O, Poran A, et al. Revisiting the initial steps of sexual development in the malaria parasite Plasmodium falciparum. Nat Microbiol. 2019;4(1):144–154. doi: 10.1038/s41564-018-0291-7
  9. Smith LM, Motta FC, Chopra G, et al. An intrinsic oscillator drives the blood stage cycle of the malaria parasite Plasmodium falciparum. Science. 2020;368(6492):754–759. doi: 10.1126/science.aba4357 EDN: FDBMJL
  10. Coetzee N, Sidoli S, Van Biljon R, et al. Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites. Sci Rep. 2017;7(1):607. doi: 10.1038/s41598-017-00687-7
  11. Baumgarten S, Bryant JM, Sinha A, et al. Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage development. Nat Microbiol. 2019;4(12): 2246–2259. doi: 10.1038/s41564-019-0521-7 EDN: WEIJFX
  12. Bachmann A, Bruske E, Krumkamp R, et al. Controlled human malaria infection with Plasmodium falciparum demonstrates impact of naturally acquired immunity on virulence gene expression. PLoS Pathog. 2019;15(7):e1007906. doi: 10.1371/journal.ppat.1007906
  13. Thomas JA, Tan MS, Bisson C, et al. A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells. Nat Microbiol. 2018;3(4):447–455. doi: 10.1038/s41564-018-0111-0
  14. Neveu G, Beri D, Kafsack BF. Metabolic regulation of sexual commitment in Plasmodium falciparum. Curr Opin Microbiol. 2020;58: 93–98. doi: 10.1016/j.mib.2020.09.004 EDN: JQJCLD
  15. Achan J, Reuling IJ, Yap XZ, et al. Serologic markers of previous malaria exposure and functional antibodies inhibiting parasite growth are associated with parasite kinetics following a Plasmodium falciparum controlled human infection. Clin Infect Dis. 2020;70(12): 2544–2552. doi: 10.1093/cid/ciz740
  16. Usui M, Prajapati SK, Ayanful-Torgby R, et al. Plasmodium falciparum sexual differentiation in malaria patients is associated with host factors and GDV1-dependent genes. Nat Commun. 2019;10(1):2140. doi: 10.1038/s41467-019-10172-6 EDN: ZMMVZW
  17. Tibúrcio M, Yang AS, Yahata K, et al. A novel tool for the generation of conditional knockouts to study gene function across the Plasmodium falciparum life cycle. mBio. 2019;10(5):e01170–19. doi: 10.1128/mBio.01170-19
  18. Wang WF, Zhang YL. PfSWIB, a potential chromatin regulator for var gene regulation and parasite development in Plasmodium falciparum. Parasit Vectors. 2020;13(1):48. doi: 10.1186/s13071-020-3918-5 EDN: WVRQUZ
  19. Coetzee N, Von Grüning H, Opperman DM, et al. Epigenetic inhibitors target multiple stages of Plasmodium falciparum parasites. Sci Rep. 2020;10(1):2355. doi: 10.1038/s41598-020-59298-4 EDN: ZZDNQP
  20. Keesey IW, Koerte S, Khallaf MA, et al. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat Commun. 2017;8(1):265. doi: 10.1038/s41467-017-00334-9 EDN: YHPCRB
  21. Herren JK, Mbaisi L, Mararo E, et al. A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes. Nat Commun. 2020;11(1):2187. doi: 10.1038/s41467-020-16121-y EDN: OOCCUL
  22. Gabrieli P, Caccia S, Varotto-Boccazzi I, et al. Mosquito trilogy: microbiota, immunity and pathogens, and their implications for the control of disease transmission. Front Microbiol. 2021;12:630438. doi: 10.3389/fmicb.2021.630438 EDN: GFCZOG
  23. Ferreira FC, Alves LG, Jager GB, et al. Molecular and pathological investigations of Plasmodium parasites infecting striped forest whiptail lizards (Kentropyx calcarata) in Brazil. Parasitol Res. 2020;119(8): 2631–2640. doi: 10.1007/s00436-020-06756-7 EDN: BQSMSU
  24. Counihan NA, Modak JK, Koning-Ward D, Tania F. How malaria parasites acquire nutrients from their host. Front Cell Dev Biol. 2021;9:649184. doi: 10.3389/fcell.2021.649184 EDN: MIQAJD
  25. Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host. Adv Virus Res. 2019;104:1–64. doi: 10.1016/bs.aivir.2019.05.001 EDN: CKGBKM
  26. Duffy S, Avery VM. Routine in vitro culture of Plasmodium falciparum: experimental consequences? Trends Parasitol. 2018;34(7):564–575. doi: 10.1016/j.pt.2018.04.005
  27. Haldar K, Bhattacharjee S, Safeukui I. Drug resistance in Plasmodium. Nat Rev Microbiol. 2018;16(3):156–170. doi: 10.1038/nrmicro.2017.161
  28. Schalkwijk J, Allman EL, Jansen PA, et al. Antimalarial pantothenamide metabolites target acetyl-coenzyme A biosynthesis in Plasmodium falciparum. Sci Transl Med. 2019;11(510):eaas9917. doi: 10.1126/scitranslmed.aas9917
  29. Huckaby AC, Granum CS, Carey MA, et al. Complex DNA structures trigger copy number variation across the Plasmodium falciparum genome. Nucleic Acids Res. 2019;47(4):1615–1627. doi: 10.1093/nar/gky1268
  30. Wale N, Sim DG, Read AF. A nutrient mediates intraspecific competition between rodent malaria parasites in vivo. Proc Biol Sci. 2017;284(1859):20171067. doi: 10.1098/rspb.2017.1067
  31. Matz JM, Watanabe M, Falade M, et al. Plasmodium para-aminobenzoate synthesis and salvage resolve avoidance of folate competition and adaptation to host diet. Cell Rep. 2019;26(2):356–363.e4. doi: 10.1016/j.celrep.2018.12.062
  32. Choudhary HH, Srivastava PN, Singh S, et al. The shikimate pathway enzyme that generates chorismate is not required for the development of Plasmodium berghei in the mammalian host nor the mosquito vector. Int J Parasitol. 2018;48(3–4):203–209. doi: 10.1016/j.ijpara.2017.10.004
  33. Verhoef H, Veenemans J, Mwangi MN, Prentice AM. Safety and benefits of interventions to increase folate status in malaria-endemic areas. Br J Haematol. 2017;177(6):905–918. doi: 10.1111/bjh.14618
  34. Vidmar M, Grželj J, Mlinarič-Raščan I, et al. Medicines associated with folate-homocysteine-methionine pathway disruption. Arch Toxicol. 2019;93(2):227–251. doi: 10.1007/s00204-018-2364-z EDN: IMORBA
  35. Cheviet T, Lefebvre-Tournier I, Wein S, Peyrottes S. Plasmodium purine metabolism and its inhibition by nucleoside and nucleotide analogues. J Med Chem. 2019;62(18):8365–8391. doi: 10.1021/acs.jmedchem.9b00182
  36. Pinapati RS. Understanding drug resistance in plasmodium falciparum through genetic crosses and global metabolomics. Indiana: University of Notre Dame; 2018. 127 p.
  37. Gul T, Balkhi HM, Haq E. Evaluation of Cellular Processes by in Vitro Assays. Ben Science Publications; 2018. doi: 10.2174/97816810870301180101
  38. Ince S, Erdogan M, Demirel HH, et al. Boron enhances early embryonic gene expressions and improves fetal development of rats. J Trace Elem Med Biol. 2018;50:34–46. doi: 10.1016/j.jtemb.2018.06.002
  39. Fitzroy SM, Gildenhuys J, Olivier T, et al. The effects of quinoline and non-quinoline inhibitors on the kinetics of lipid-mediated β-hematin crystallization. Langmuir. 2017;33(30):7529–7537. doi: 10.1021/acs.langmuir.7b01132
  40. Bennett TN, Kosar AD, Ursos LM, et al. Drug resistance-associated pfCRT mutations confer decreased Plasmodium falciparum digestive vacuolar pH. Mol Biochem Parasitol. 2004;133(1):99–114. doi: 10.1016/j.molbiopara.2003.09.008
  41. Zhang H, Paguio M, Roepe PD. The antimalarial drug resistance protein Plasmodium falciparum chloroquine resistance transporter binds chloroquine. Biochemistry. 2004;43(26):8290–8296. doi: 10.1021/bi049137i
  42. Ecker A, Lehane AM, Clain J, Fidock DA. PfCRT and its role in antimalarial drug resistance. Trends Parasitol. 2012;28(11):504–514. doi: 10.1016/j.pt.2012.08.002
  43. Lakshmanan V, Bray PG, Verdier-Pinard D, et al. A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance. EMBO J. 2005;24(13):2294–2305. doi: 10.1038/sj.emboj.7600681
  44. Bray PG, Martin RE, Tilley L, et al. Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Mol Microbiol. 2005;56(2): 323–333. doi: 10.1111/j.1365-2958.2005.04556.x EDN: MGRDMJ
  45. Pulcini S, Staines HM, Lee HA, et al. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite’s food vacuole and alter drug sensitivities. Sci Rep. 2015;5:14552. doi: 10.1038/srep14552
  46. Martin RE, Marchetti RV, Cowan AI, et al. Chloroquine transport via the malaria parasite’s chloroquine resistance transporter. Science. 2009;325(5948):1680–1682. doi: 10.1126/science.1175667 EDN: MYLABB
  47. Zhang H, Howard EM, Roepe PD. Analysis of the antimalarial drug resistance protein Pfcrt expressed in yeast. J Biol Chem. 2002;277(51):49767–49775. doi: 10.1074/jbc.M204005200
  48. Jiang H, Patel JJ, Yi M, et al. Genome-wide compensatory changes accompany drug-selected mutations in the Plasmodium falciparum CRT gene. PLoS One. 2008;3(6):e2484. doi: 10.1371/journal.pone.0002484
  49. Hargraves KG, He L, Firestone GL. Phytochemical regulation of the tumor suppressive microRNA, miR-34a, by p53-dependent and independent responses in human breast cancer cells. Mol Carcinog. 2017;55(5):486–498. doi: 10.1002/mc.22296 EDN: WNNEBL
  50. Tong Y, Liu Y, Zheng H, et al. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget. 2016;7(21): 31413–31428. doi: 10.18632/oncotarget.8920
  51. Munyangi J, Cornet-Vernet L, Idumbo M, et al. Effect of Artemisia annua and Artemisia afra tea infusions on schistosomiasis in a large clinical trial. Phytomedicine. 2018;51:233–240. doi: 10.1016/j.phymed.2018.10.014
  52. Woerdenbag HJ, Lugt CB, Pras N. Artemisia annua L.: a source of novel antimalarial drugs. Pharm Weekbl Sci. 1990;12(5):169–181. doi: 10.1007/BF01980041 EDN: MLHKID
  53. Ferreira JF, Benedito VA, Sandhu D, et al. Seasonal and differential sesquiterpene accumulation in Artemisia annua suggest selection based on both artemisinin and dihydroartemisinic acid may increase artemisinin in planta. Front Plant Sci. 2018;9:1096. doi: 10.3389/fpls.2018.01096
  54. Gruessner BM, Weathers PJ. In vitro analyses of Artemisia extracts on Plasmodium falciparum suggest a complex antimalarial effect. PLoS One. 2021;16(3):e0240874. doi: 10.1371/journal.pone.0240874 EDN: WIHAVN
  55. Kshirsagar SG, Rao RV. Antiviral and immunomodulation effects of Artemisia. Medicina. 2021;57(3):217. doi: 10.3390/medicina57030217 EDN: KFOOJQ
  56. Lv Z, Zhang F, Pan Q, et al. Branch pathway blocking in Artemisia annua is a useful method for obtaining high yield artemisinin. Plant Cell Physiol. 2016;57(3):588–602. doi: 10.1093/pcp/pcw014
  57. Weathers PJ, Elkholy S, Wobbe KK. Artemisinin: the biosynthetic pathway and its regulation in Artemisia annua, a terpenoid-rich species. In Vitro Cell Dev Biol. 2006;42(4):309–317. doi: 10.1079/IVP2006782 EDN: NFWJNW
  58. Mishra R, Mishra B, Moorthy N. Dihydrofolate reductase enzyme: a potent target. Asian J Cell Biol. 2006;1(1):48–58. doi: 10.3923/ajcb.2006.48.58
  59. Sharma M, Chauhan PM. Dihydrofolate reductase as a therapeutic target for infectious diseases: opportunities and challenges. Future Med Chem. 2012;4(10):1335–1365. doi: 10.4155/fmc.12.68
  60. Uhlemann AC, Yuthavong Y, Fidock DA. Mechanisms of antimalarial drug action and resistance. Mol Appl Malariol. 2005:427–461. doi: 10.1128/9781555817558.ch23
  61. Muregi FW. Antimalarial drugs and their useful therapeutic lives: rational drug design lessons from pleiotropic action of quinolines and artemisinins. Curr Drug Discov Technol. 2010;7(4):280–316. doi: 10.2174/157016310793360693 EDN: OLWIMH
  62. Mital A. Recent advances in antimalarial compounds and their patents. Curr Med Chem. 2007;14(7):759–773. doi: 10.2174/092986707780090927
  63. Hastings MI, Watkins WM, White NJ. The evolution of drug-resistant malaria: the role of drug elimination half-life. Philos Trans R Soc Lond B Biol Sci. 2002;357(1420):505–519. doi: 10.1098/rstb.2001.1036
  64. Dayan FE. Current status and future prospects in herbicide discovery. Plants. 2019;8(9):341. doi: 10.3390/plants8090341
  65. Reilly HB. The genetic dissection of differential growth in Plasmodium falciparum and its relationship to chloroquine drug selection. Indiana: University of Notre Dame; 2008.
  66. McElroy PD. Plasmodium falciparum transmission pressure and malarial morbidity among young children in western Kenya. University of Michigan; 1998.
  67. Mosqueira VC, Loiseau PM, Bories C, et al. Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice. Antimicrob Agents Chemother. 2004;48(4):1222–1228. doi: 10.1128/AAC.48.4.1222-1228.2004
  68. Okpe O, Habila N, Ikwebe J, et al. Antimalarial potential of Carica papaya and Vernonia amygdalina in mice infected with Plasmodium berghei. J Trop Med. 2016;2016:8738972. doi: 10.9734/JOCAMR/2017/29402
  69. Leite EA, Grabe-Guimarães A, Guimarães HN, et al. Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Life Sci. 2007;80(14):1327–1334. doi: 10.1016/j.lfs.2006.12.019
  70. Coleman RE, Clavin AM, Milhous WK. Gametocytocidal sporontocidal activity of antimalarials against Plasmodium berghei ANAKA in ICR mice and Anopheles stephensi mosquitoes. Am J Trop Med Hyg. 1992;46(2):169–182. doi: 10.4269/ajtmh.1992.46.169
  71. Musset L, Pradines B, Parzy D, et al. Apparent absence of atovaquone/proguanil resistance in 477 Plasmodium falciparum isolates from untreated French travellers. J Antimicrob Chemother. 2006;57(1):110–115. doi: 10.1093/jac/dki420 EDN: IQQIGP
  72. Kate L, Gokarna V, Borhade V, et al. Bioavailability enhancement of atovaquone using hot melt extrusion technology. Eur J Pharm Sci. 2016;86:103–114. doi: 10.1016/j.ejps.2016.03.005
  73. Hitani A, Nakamura T, Ohtomo H, et al. Efficacy and safety of atovaquone-proguanil compared with mefloquine in the treatment of nonimmune patients with uncomplicated P. falciparum malaria in Japan. J Infect Chemother. 2006;12(5):277–282. doi: 10.1007/s10156-006-0465-8
  74. Vaidya AB. Atovaquone-Proguanil Combination. In: Antimalarial Chemotherapy. Springer; 2001:203–218. doi: 10.1007/978-1-59259-111-4_11
  75. Van der Merwe AJ. Development and evaluation of an oral fixed-dose triple combination dosage form for artesunate, dapsone and proguanil. Boloka Institutional Repository, North-West University; 2011.
  76. Pava Z, Mok S, Collins KA, et al. Plasmodium falciparum artemisinin-resistant K13 mutations confer a sexual-stage transmission advantage that can be overcome with atovaquone-proguanil. medRxiv. 2020. doi: 10.1101/2020.10.26.20214619
  77. Taylor R, Moody R, Ochekpe N, et al. A chemical stability study of proguanil hydrochloride. Int J Pharm. 1990;60:185–190. doi: 10.1016/0378-5173(90)90071-B
  78. Rodriguez W, Selen A, Avant D, et al. Improving pediatric dosing through pediatric initiatives: what we have learned. Pediatrics. 2008;121(3):530–539. doi: 10.1542/peds.2007-1529
  79. Mounkoro P, Michel T, Meunier B. Revisiting the mode of action of the antimalarial proguanil using the yeast model. Biochem Biophys Res Commun. 2021;534:94–98. doi: 10.1016/j.bbrc.2020.12.004 EDN: WEOBXQ
  80. Lakshmana RA, Prasanthi T, Thunnisa F. Development and validation for simultaneous estimation of proguanil and atovaquone by using RP-HPLC. Int J Anal Tech. 2018;3(2):1–10. doi: 10.15226/2577-7831/4/1/00113
  81. Bejugam N, Dengale SJ, Shetty R, et al. New liquid chromatographic method for simultaneous quantification of atovaquone and proguanil with its active metabolite cycloguanil in human plasma. Int J Pharm Educ Res. 2014;48(suppl):83–92. doi: 10.5530/ijper.48.4s.11
  82. Darade A, Pathak S, Sharma S, et al. Atovaquone oral bioavailability enhancement using electrospraying technology. Eur J Pharm Sci. 2018;111:195–204. doi: 10.1016/j.ejps.2017.09.051
  83. Hoellein L, Holzgrabe U. Development of simplified HPLC methods for the detection of counterfeit antimalarials in resource-restraint environments. J Pharm Biomed Anal. 2014;98:434–445. doi: 10.1016/j.jpba.2014.06.013
  84. Wu D, Qiao K, Feng M, et al. Apoptosis of Acanthamoeba castellanii trophozoites induced by oleic acid. J Eukaryot Microbiol. 2018;65(2):191–199. doi: 10.1186/s13071-018-3188-7 EDN: YGDXJR
  85. Liu F, Liu Q, Yu C, et al. An MFS-domain protein Pb115 plays a critical role in gamete fertilization of the malaria parasite Plasmodium berghei. Front Microbiol. 2019;10:2193. doi: 10.3389/fmicb.2019.02193
  86. Rosenthal PJ. Antimalarial drug discovery: old and new approaches. J Exp Biol. 2003;206 (Pt 21):3735–3744. doi: 10.1242/jeb.00589
  87. Biot C, Chibale K. Novel approaches to antimalarial drug discovery. Infect Disord Drug Targets. 2006;6(2):173–204. doi: 10.2174/187152606784112155 EDN: XUELIV
  88. Kirk K, Lehane AM. Membrane transport in the malaria parasite and its host erythrocyte. Biochem J. 2014;457(1):1–18. doi: 10.1042/BJ20131007
  89. Sucher NJ. The application of Chinese medicine to novel drug discovery. Expert Opin Drug Discov. 2013;8(1):21–34. doi: 10.1517/17460441.2013.739602
  90. Kanaani J, Ginsburg H. Metabolic interconnection between the human malarial parasite Plasmodium falciparum and its host erythrocyte: regulation of ATP levels by means of an adenylate translocator and adenylate kinase. J Biol Chem. 1989;264(6):3194–3199. doi: 10.1016/S0021-9258(18)94050-0
  91. Preuss J, Jortzik E, Becker K. Glucose-6-phosphate metabolism in Plasmodium falciparum. IUBMB Life. 2012;64(7):603–611. doi: 10.1002/iub.1047
  92. Mubaraki M. Pharmacometabolomic study of the human malaria parasite, Plasmodium falciparum: new insights into parasite biology and mode of drug action. University of Liverpool, 2013.
  93. Jackson KE, Habib S, Frugier M, et al. Protein translation in Plasmodium parasites. Trends Parasitol. 2011;27(10):467–476. doi: 10.1016/j.pt.2011.05.005 EDN: PIRXDX
  94. Wong W, Bai XC, Brown A, et al. Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife. 2014;3: e03080. doi: 10.7554/eLife.03080 EDN: UQYDBP
  95. Bell A, Ranford-Cartwright L. A real-time PCR assay for quantifying Plasmodium falciparum infections in the mosquito vector. Int J Parasitol. 2004;34(7):795–802. doi: 10.1016/j.ijpara.2004.03.008
  96. Sidhu ABS, Sun Q, Nkrumah LJ, et al. In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin. J Biol Chem. 2007;282(4):2494–2504. doi: 10.1074/jbc.M608615200
  97. Markota A, Kalamar Ž, Fluher J, et al. Therapeutic hyperthermia for the treatment of infection — a narrative review. Front Physiol. 2023;14:1215686. doi: 10.3389/fphys.2023.1215686 EDN: JITCWX
  98. Young PJ, Bellomo R. Fever in sepsis: is it cool to be hot? Crit Care. 2014;18(1):109. doi: 10.1186/cc13726 EDN: SODYVN
  99. Rumbus Z, Matics R, Hegyi P, et al. Fever is associated with reduced, hypothermia with increased mortality in septic patients: a meta-analysis of clinical trials. PLoS One. 2017;12(1):e0170152. doi: 10.1371/journal.pone.0170152 EDN: YWURQF
  100. Young PJ, Saxena M. Fever management in intensive care patients with infections. Crit Care. 2014;18(2):206. doi: 10.1186/cc13773 EDN: VRCXAR
  101. Urakov A. How temperature pharmacology was formed: history in personalities. J Drug Deliv Ther. 2020;10(S4):226–231. doi: 10.22270/jddt.v10i4-s.4208 EDN: ESAOFR
  102. Urakov AL. Thermal pharmacology: history and definition. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(1):87–96. doi: 10.17816/RCF19187-96 EDN: YIGBEQ
  103. Urakov A, Urakova N. Targeted temperature management in obstetrics for prevention perinatal encephalopathy. Turk J Med Sci. 2024;54(4):876–877. doi: 10.55730/1300-0144.5859 EDN: TYUCKG
  104. Urakova N, Urakov A, Shabanov P. Pharmacological activities of warm alkaline hydrogen peroxide solution and therapeutic potential in medicine: physical-chemical reprofiling as a promising lead for drug discovery. Anti-Infective Agents. 2024;23. doi: 10.2174/0122113525351536241122063840 EDN: ETDHHL

Copyright (c) 2025 Eco-Vector



 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».