“Old” and current antimalarial drugs, mechanism of action, significance of fever and therapeutic hyperthermia
- Authors: Khan J.1, Rudrapal M.2, Urakov A.L.3
-
Affiliations:
- Majmaah University
- School of Biotechnology and Pharmaceutical Sciences Vignan’s Foundation for Science, Technology & Research
- Izhevsk State Medical Academy
- Issue: Vol 23, No 1 (2025)
- Pages: 29-40
- Section: Reviews
- URL: https://bakhtiniada.ru/RCF/article/view/312483
- DOI: https://doi.org/10.17816/RCF642586
- EDN: https://elibrary.ru/WWOWGZ
- ID: 312483
Cite item
Abstract
It is reported that according to WHO report (2020), more than 229 million people in 87 countries have malaria despite the use of antimalarial drugs. Moreover, modern combination therapy cannot exclude this disease either. The fact is that malaria pathogens, as well as pathogens of other infectious diseases, gradually acquire resistance to anti-infective drugs. And such resistance of parasites to antimalarial drugs increases with increasing duration of use of these drugs in the community. In other words, antimalarial drugs used in the treatment and prevention of malaria are not only factors in the treatment and prevention of malaria, but gradually acquire the role of factors affecting the “natural” selection of pathogens. It is with the help of applied antimalarial drugs that parasites gradually adapt to existence in the organism of malaria patients, trying to survive despite the availability of drugs. It is shown that the intensity of mutations of malaria pathogens in their population, parasite load, choice of antimalarial drugs, accounting and control of antimalarial activity of the drugs used, the effectiveness and safety of the drugs used, their single and course doses, the effectiveness of individual course antimalarial therapy and control of drug-parasite interaction are the main factors in the effectiveness of treatment and prevention of malaria, as well as the factors of drug resistance of parasites. The review reiterates the importance of knowledge of the basic metabolism and life cycle of both parasite and host in understanding the mechanism of drug action and drug resistance in parasites. This knowledge is very important for the selection of new drug targets for the search and development of new antimalarial drugs. It is reported that fever, diurnal rhythm of body temperature, and therapeutic hyperthermia are not only factors in preventing infection, keeping patients healthy, and the course of malaria, but also factors in the mechanism of action of antimalarial drugs, the efficacy of drug therapy for infection, and the resistance of malaria pathogens to antimalarial drugs.
Full Text
##article.viewOnOriginalSite##About the authors
Johra Khan
Majmaah University
Email: j.khan@mu.edu.sa
ORCID iD: 0000-0002-0044-4758
Saudi Arabia, Al Majmaah
Mithun Rudrapal
School of Biotechnology and Pharmaceutical Sciences Vignan’s Foundation for Science, Technology & Research
Email: drmr_pharma@vignan.ac.in
ORCID iD: 0000-0002-8172-6633
MD, Dr. Sci. (Medicine), Professor
India, Vadlamudi, GunturAleksandr L. Urakov
Izhevsk State Medical Academy
Author for correspondence.
Email: urakoval@live.ru
ORCID iD: 0000-0002-9829-9463
SPIN-code: 1613-9660
MD, Dr. Sci. (Medicine), Professor
Russian Federation, IzhevskReferences
- Josling GA, Russell TJ, Venezia J, et al. Dissecting the role of PfAP2-G in malaria gametocytogenesis. Nat Commun. 2020; 11(1):1–13. doi: 10.1038/s41467-020-15026-0 EDN: EGZFKE
- Imwong M, Dhorda M, Tun KM, et al. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study. Lancet Infect Dis. 2020;20(12):1470–1480. doi: 10.1016/S1473-3099(20)30228-0 EDN: XAGVSD
- Meibalan E, Marti M. Biology of malaria transmission. Cold Spring Harb Perspect Med. 2017;7(3):a025452. doi: 10.1101/cshperspect.a025452 EDN: YYADXP
- Eikenberry SE, Gumel AB. Mathematical modeling of climate change and malaria transmission dynamics: a historical review. J Math Biol. 2018;77(4):857–933. doi: 10.1007/s00285-018-1229-7 EDN: YHUYCL
- Alout H, Roche B, Dabiré RK, Cohuet A. Consequences of insecticide resistance on malaria transmission. PLoS Pathog. 2017;13(9):e1006499. doi: 10.1371/journal.ppat.1006499
- Matthews KA, Senagbe KM, Nötzel C, et al. Disruption of the Plasmodium falciparum life cycle through transcriptional reprogramming by inhibitors of Jumonji demethylases. ACS Infect Dis. 2020;6(5): 1058–1075. doi: 10.1021/acsinfecdis.9b00455 EDN: HQIMHK
- Li X, Kumar S, McDew-White M, et al. Genetic mapping of fitness determinants across the malaria parasite Plasmodium falciparum life cycle. PLoS Genet. 2019;15(10):e1008453. doi: 10.1371/journal.pgen.1008453
- Bancells C, Llorà-Batlle O, Poran A, et al. Revisiting the initial steps of sexual development in the malaria parasite Plasmodium falciparum. Nat Microbiol. 2019;4(1):144–154. doi: 10.1038/s41564-018-0291-7
- Smith LM, Motta FC, Chopra G, et al. An intrinsic oscillator drives the blood stage cycle of the malaria parasite Plasmodium falciparum. Science. 2020;368(6492):754–759. doi: 10.1126/science.aba4357 EDN: FDBMJL
- Coetzee N, Sidoli S, Van Biljon R, et al. Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites. Sci Rep. 2017;7(1):607. doi: 10.1038/s41598-017-00687-7
- Baumgarten S, Bryant JM, Sinha A, et al. Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage development. Nat Microbiol. 2019;4(12): 2246–2259. doi: 10.1038/s41564-019-0521-7 EDN: WEIJFX
- Bachmann A, Bruske E, Krumkamp R, et al. Controlled human malaria infection with Plasmodium falciparum demonstrates impact of naturally acquired immunity on virulence gene expression. PLoS Pathog. 2019;15(7):e1007906. doi: 10.1371/journal.ppat.1007906
- Thomas JA, Tan MS, Bisson C, et al. A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells. Nat Microbiol. 2018;3(4):447–455. doi: 10.1038/s41564-018-0111-0
- Neveu G, Beri D, Kafsack BF. Metabolic regulation of sexual commitment in Plasmodium falciparum. Curr Opin Microbiol. 2020;58: 93–98. doi: 10.1016/j.mib.2020.09.004 EDN: JQJCLD
- Achan J, Reuling IJ, Yap XZ, et al. Serologic markers of previous malaria exposure and functional antibodies inhibiting parasite growth are associated with parasite kinetics following a Plasmodium falciparum controlled human infection. Clin Infect Dis. 2020;70(12): 2544–2552. doi: 10.1093/cid/ciz740
- Usui M, Prajapati SK, Ayanful-Torgby R, et al. Plasmodium falciparum sexual differentiation in malaria patients is associated with host factors and GDV1-dependent genes. Nat Commun. 2019;10(1):2140. doi: 10.1038/s41467-019-10172-6 EDN: ZMMVZW
- Tibúrcio M, Yang AS, Yahata K, et al. A novel tool for the generation of conditional knockouts to study gene function across the Plasmodium falciparum life cycle. mBio. 2019;10(5):e01170–19. doi: 10.1128/mBio.01170-19
- Wang WF, Zhang YL. PfSWIB, a potential chromatin regulator for var gene regulation and parasite development in Plasmodium falciparum. Parasit Vectors. 2020;13(1):48. doi: 10.1186/s13071-020-3918-5 EDN: WVRQUZ
- Coetzee N, Von Grüning H, Opperman DM, et al. Epigenetic inhibitors target multiple stages of Plasmodium falciparum parasites. Sci Rep. 2020;10(1):2355. doi: 10.1038/s41598-020-59298-4 EDN: ZZDNQP
- Keesey IW, Koerte S, Khallaf MA, et al. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat Commun. 2017;8(1):265. doi: 10.1038/s41467-017-00334-9 EDN: YHPCRB
- Herren JK, Mbaisi L, Mararo E, et al. A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes. Nat Commun. 2020;11(1):2187. doi: 10.1038/s41467-020-16121-y EDN: OOCCUL
- Gabrieli P, Caccia S, Varotto-Boccazzi I, et al. Mosquito trilogy: microbiota, immunity and pathogens, and their implications for the control of disease transmission. Front Microbiol. 2021;12:630438. doi: 10.3389/fmicb.2021.630438 EDN: GFCZOG
- Ferreira FC, Alves LG, Jager GB, et al. Molecular and pathological investigations of Plasmodium parasites infecting striped forest whiptail lizards (Kentropyx calcarata) in Brazil. Parasitol Res. 2020;119(8): 2631–2640. doi: 10.1007/s00436-020-06756-7 EDN: BQSMSU
- Counihan NA, Modak JK, Koning-Ward D, Tania F. How malaria parasites acquire nutrients from their host. Front Cell Dev Biol. 2021;9:649184. doi: 10.3389/fcell.2021.649184 EDN: MIQAJD
- Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host. Adv Virus Res. 2019;104:1–64. doi: 10.1016/bs.aivir.2019.05.001 EDN: CKGBKM
- Duffy S, Avery VM. Routine in vitro culture of Plasmodium falciparum: experimental consequences? Trends Parasitol. 2018;34(7):564–575. doi: 10.1016/j.pt.2018.04.005
- Haldar K, Bhattacharjee S, Safeukui I. Drug resistance in Plasmodium. Nat Rev Microbiol. 2018;16(3):156–170. doi: 10.1038/nrmicro.2017.161
- Schalkwijk J, Allman EL, Jansen PA, et al. Antimalarial pantothenamide metabolites target acetyl-coenzyme A biosynthesis in Plasmodium falciparum. Sci Transl Med. 2019;11(510):eaas9917. doi: 10.1126/scitranslmed.aas9917
- Huckaby AC, Granum CS, Carey MA, et al. Complex DNA structures trigger copy number variation across the Plasmodium falciparum genome. Nucleic Acids Res. 2019;47(4):1615–1627. doi: 10.1093/nar/gky1268
- Wale N, Sim DG, Read AF. A nutrient mediates intraspecific competition between rodent malaria parasites in vivo. Proc Biol Sci. 2017;284(1859):20171067. doi: 10.1098/rspb.2017.1067
- Matz JM, Watanabe M, Falade M, et al. Plasmodium para-aminobenzoate synthesis and salvage resolve avoidance of folate competition and adaptation to host diet. Cell Rep. 2019;26(2):356–363.e4. doi: 10.1016/j.celrep.2018.12.062
- Choudhary HH, Srivastava PN, Singh S, et al. The shikimate pathway enzyme that generates chorismate is not required for the development of Plasmodium berghei in the mammalian host nor the mosquito vector. Int J Parasitol. 2018;48(3–4):203–209. doi: 10.1016/j.ijpara.2017.10.004
- Verhoef H, Veenemans J, Mwangi MN, Prentice AM. Safety and benefits of interventions to increase folate status in malaria-endemic areas. Br J Haematol. 2017;177(6):905–918. doi: 10.1111/bjh.14618
- Vidmar M, Grželj J, Mlinarič-Raščan I, et al. Medicines associated with folate-homocysteine-methionine pathway disruption. Arch Toxicol. 2019;93(2):227–251. doi: 10.1007/s00204-018-2364-z EDN: IMORBA
- Cheviet T, Lefebvre-Tournier I, Wein S, Peyrottes S. Plasmodium purine metabolism and its inhibition by nucleoside and nucleotide analogues. J Med Chem. 2019;62(18):8365–8391. doi: 10.1021/acs.jmedchem.9b00182
- Pinapati RS. Understanding drug resistance in plasmodium falciparum through genetic crosses and global metabolomics. Indiana: University of Notre Dame; 2018. 127 p.
- Gul T, Balkhi HM, Haq E. Evaluation of Cellular Processes by in Vitro Assays. Ben Science Publications; 2018. doi: 10.2174/97816810870301180101
- Ince S, Erdogan M, Demirel HH, et al. Boron enhances early embryonic gene expressions and improves fetal development of rats. J Trace Elem Med Biol. 2018;50:34–46. doi: 10.1016/j.jtemb.2018.06.002
- Fitzroy SM, Gildenhuys J, Olivier T, et al. The effects of quinoline and non-quinoline inhibitors on the kinetics of lipid-mediated β-hematin crystallization. Langmuir. 2017;33(30):7529–7537. doi: 10.1021/acs.langmuir.7b01132
- Bennett TN, Kosar AD, Ursos LM, et al. Drug resistance-associated pfCRT mutations confer decreased Plasmodium falciparum digestive vacuolar pH. Mol Biochem Parasitol. 2004;133(1):99–114. doi: 10.1016/j.molbiopara.2003.09.008
- Zhang H, Paguio M, Roepe PD. The antimalarial drug resistance protein Plasmodium falciparum chloroquine resistance transporter binds chloroquine. Biochemistry. 2004;43(26):8290–8296. doi: 10.1021/bi049137i
- Ecker A, Lehane AM, Clain J, Fidock DA. PfCRT and its role in antimalarial drug resistance. Trends Parasitol. 2012;28(11):504–514. doi: 10.1016/j.pt.2012.08.002
- Lakshmanan V, Bray PG, Verdier-Pinard D, et al. A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance. EMBO J. 2005;24(13):2294–2305. doi: 10.1038/sj.emboj.7600681
- Bray PG, Martin RE, Tilley L, et al. Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Mol Microbiol. 2005;56(2): 323–333. doi: 10.1111/j.1365-2958.2005.04556.x EDN: MGRDMJ
- Pulcini S, Staines HM, Lee HA, et al. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite’s food vacuole and alter drug sensitivities. Sci Rep. 2015;5:14552. doi: 10.1038/srep14552
- Martin RE, Marchetti RV, Cowan AI, et al. Chloroquine transport via the malaria parasite’s chloroquine resistance transporter. Science. 2009;325(5948):1680–1682. doi: 10.1126/science.1175667 EDN: MYLABB
- Zhang H, Howard EM, Roepe PD. Analysis of the antimalarial drug resistance protein Pfcrt expressed in yeast. J Biol Chem. 2002;277(51):49767–49775. doi: 10.1074/jbc.M204005200
- Jiang H, Patel JJ, Yi M, et al. Genome-wide compensatory changes accompany drug-selected mutations in the Plasmodium falciparum CRT gene. PLoS One. 2008;3(6):e2484. doi: 10.1371/journal.pone.0002484
- Hargraves KG, He L, Firestone GL. Phytochemical regulation of the tumor suppressive microRNA, miR-34a, by p53-dependent and independent responses in human breast cancer cells. Mol Carcinog. 2017;55(5):486–498. doi: 10.1002/mc.22296 EDN: WNNEBL
- Tong Y, Liu Y, Zheng H, et al. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget. 2016;7(21): 31413–31428. doi: 10.18632/oncotarget.8920
- Munyangi J, Cornet-Vernet L, Idumbo M, et al. Effect of Artemisia annua and Artemisia afra tea infusions on schistosomiasis in a large clinical trial. Phytomedicine. 2018;51:233–240. doi: 10.1016/j.phymed.2018.10.014
- Woerdenbag HJ, Lugt CB, Pras N. Artemisia annua L.: a source of novel antimalarial drugs. Pharm Weekbl Sci. 1990;12(5):169–181. doi: 10.1007/BF01980041 EDN: MLHKID
- Ferreira JF, Benedito VA, Sandhu D, et al. Seasonal and differential sesquiterpene accumulation in Artemisia annua suggest selection based on both artemisinin and dihydroartemisinic acid may increase artemisinin in planta. Front Plant Sci. 2018;9:1096. doi: 10.3389/fpls.2018.01096
- Gruessner BM, Weathers PJ. In vitro analyses of Artemisia extracts on Plasmodium falciparum suggest a complex antimalarial effect. PLoS One. 2021;16(3):e0240874. doi: 10.1371/journal.pone.0240874 EDN: WIHAVN
- Kshirsagar SG, Rao RV. Antiviral and immunomodulation effects of Artemisia. Medicina. 2021;57(3):217. doi: 10.3390/medicina57030217 EDN: KFOOJQ
- Lv Z, Zhang F, Pan Q, et al. Branch pathway blocking in Artemisia annua is a useful method for obtaining high yield artemisinin. Plant Cell Physiol. 2016;57(3):588–602. doi: 10.1093/pcp/pcw014
- Weathers PJ, Elkholy S, Wobbe KK. Artemisinin: the biosynthetic pathway and its regulation in Artemisia annua, a terpenoid-rich species. In Vitro Cell Dev Biol. 2006;42(4):309–317. doi: 10.1079/IVP2006782 EDN: NFWJNW
- Mishra R, Mishra B, Moorthy N. Dihydrofolate reductase enzyme: a potent target. Asian J Cell Biol. 2006;1(1):48–58. doi: 10.3923/ajcb.2006.48.58
- Sharma M, Chauhan PM. Dihydrofolate reductase as a therapeutic target for infectious diseases: opportunities and challenges. Future Med Chem. 2012;4(10):1335–1365. doi: 10.4155/fmc.12.68
- Uhlemann AC, Yuthavong Y, Fidock DA. Mechanisms of antimalarial drug action and resistance. Mol Appl Malariol. 2005:427–461. doi: 10.1128/9781555817558.ch23
- Muregi FW. Antimalarial drugs and their useful therapeutic lives: rational drug design lessons from pleiotropic action of quinolines and artemisinins. Curr Drug Discov Technol. 2010;7(4):280–316. doi: 10.2174/157016310793360693 EDN: OLWIMH
- Mital A. Recent advances in antimalarial compounds and their patents. Curr Med Chem. 2007;14(7):759–773. doi: 10.2174/092986707780090927
- Hastings MI, Watkins WM, White NJ. The evolution of drug-resistant malaria: the role of drug elimination half-life. Philos Trans R Soc Lond B Biol Sci. 2002;357(1420):505–519. doi: 10.1098/rstb.2001.1036
- Dayan FE. Current status and future prospects in herbicide discovery. Plants. 2019;8(9):341. doi: 10.3390/plants8090341
- Reilly HB. The genetic dissection of differential growth in Plasmodium falciparum and its relationship to chloroquine drug selection. Indiana: University of Notre Dame; 2008.
- McElroy PD. Plasmodium falciparum transmission pressure and malarial morbidity among young children in western Kenya. University of Michigan; 1998.
- Mosqueira VC, Loiseau PM, Bories C, et al. Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice. Antimicrob Agents Chemother. 2004;48(4):1222–1228. doi: 10.1128/AAC.48.4.1222-1228.2004
- Okpe O, Habila N, Ikwebe J, et al. Antimalarial potential of Carica papaya and Vernonia amygdalina in mice infected with Plasmodium berghei. J Trop Med. 2016;2016:8738972. doi: 10.9734/JOCAMR/2017/29402
- Leite EA, Grabe-Guimarães A, Guimarães HN, et al. Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Life Sci. 2007;80(14):1327–1334. doi: 10.1016/j.lfs.2006.12.019
- Coleman RE, Clavin AM, Milhous WK. Gametocytocidal sporontocidal activity of antimalarials against Plasmodium berghei ANAKA in ICR mice and Anopheles stephensi mosquitoes. Am J Trop Med Hyg. 1992;46(2):169–182. doi: 10.4269/ajtmh.1992.46.169
- Musset L, Pradines B, Parzy D, et al. Apparent absence of atovaquone/proguanil resistance in 477 Plasmodium falciparum isolates from untreated French travellers. J Antimicrob Chemother. 2006;57(1):110–115. doi: 10.1093/jac/dki420 EDN: IQQIGP
- Kate L, Gokarna V, Borhade V, et al. Bioavailability enhancement of atovaquone using hot melt extrusion technology. Eur J Pharm Sci. 2016;86:103–114. doi: 10.1016/j.ejps.2016.03.005
- Hitani A, Nakamura T, Ohtomo H, et al. Efficacy and safety of atovaquone-proguanil compared with mefloquine in the treatment of nonimmune patients with uncomplicated P. falciparum malaria in Japan. J Infect Chemother. 2006;12(5):277–282. doi: 10.1007/s10156-006-0465-8
- Vaidya AB. Atovaquone-Proguanil Combination. In: Antimalarial Chemotherapy. Springer; 2001:203–218. doi: 10.1007/978-1-59259-111-4_11
- Van der Merwe AJ. Development and evaluation of an oral fixed-dose triple combination dosage form for artesunate, dapsone and proguanil. Boloka Institutional Repository, North-West University; 2011.
- Pava Z, Mok S, Collins KA, et al. Plasmodium falciparum artemisinin-resistant K13 mutations confer a sexual-stage transmission advantage that can be overcome with atovaquone-proguanil. medRxiv. 2020. doi: 10.1101/2020.10.26.20214619
- Taylor R, Moody R, Ochekpe N, et al. A chemical stability study of proguanil hydrochloride. Int J Pharm. 1990;60:185–190. doi: 10.1016/0378-5173(90)90071-B
- Rodriguez W, Selen A, Avant D, et al. Improving pediatric dosing through pediatric initiatives: what we have learned. Pediatrics. 2008;121(3):530–539. doi: 10.1542/peds.2007-1529
- Mounkoro P, Michel T, Meunier B. Revisiting the mode of action of the antimalarial proguanil using the yeast model. Biochem Biophys Res Commun. 2021;534:94–98. doi: 10.1016/j.bbrc.2020.12.004 EDN: WEOBXQ
- Lakshmana RA, Prasanthi T, Thunnisa F. Development and validation for simultaneous estimation of proguanil and atovaquone by using RP-HPLC. Int J Anal Tech. 2018;3(2):1–10. doi: 10.15226/2577-7831/4/1/00113
- Bejugam N, Dengale SJ, Shetty R, et al. New liquid chromatographic method for simultaneous quantification of atovaquone and proguanil with its active metabolite cycloguanil in human plasma. Int J Pharm Educ Res. 2014;48(suppl):83–92. doi: 10.5530/ijper.48.4s.11
- Darade A, Pathak S, Sharma S, et al. Atovaquone oral bioavailability enhancement using electrospraying technology. Eur J Pharm Sci. 2018;111:195–204. doi: 10.1016/j.ejps.2017.09.051
- Hoellein L, Holzgrabe U. Development of simplified HPLC methods for the detection of counterfeit antimalarials in resource-restraint environments. J Pharm Biomed Anal. 2014;98:434–445. doi: 10.1016/j.jpba.2014.06.013
- Wu D, Qiao K, Feng M, et al. Apoptosis of Acanthamoeba castellanii trophozoites induced by oleic acid. J Eukaryot Microbiol. 2018;65(2):191–199. doi: 10.1186/s13071-018-3188-7 EDN: YGDXJR
- Liu F, Liu Q, Yu C, et al. An MFS-domain protein Pb115 plays a critical role in gamete fertilization of the malaria parasite Plasmodium berghei. Front Microbiol. 2019;10:2193. doi: 10.3389/fmicb.2019.02193
- Rosenthal PJ. Antimalarial drug discovery: old and new approaches. J Exp Biol. 2003;206 (Pt 21):3735–3744. doi: 10.1242/jeb.00589
- Biot C, Chibale K. Novel approaches to antimalarial drug discovery. Infect Disord Drug Targets. 2006;6(2):173–204. doi: 10.2174/187152606784112155 EDN: XUELIV
- Kirk K, Lehane AM. Membrane transport in the malaria parasite and its host erythrocyte. Biochem J. 2014;457(1):1–18. doi: 10.1042/BJ20131007
- Sucher NJ. The application of Chinese medicine to novel drug discovery. Expert Opin Drug Discov. 2013;8(1):21–34. doi: 10.1517/17460441.2013.739602
- Kanaani J, Ginsburg H. Metabolic interconnection between the human malarial parasite Plasmodium falciparum and its host erythrocyte: regulation of ATP levels by means of an adenylate translocator and adenylate kinase. J Biol Chem. 1989;264(6):3194–3199. doi: 10.1016/S0021-9258(18)94050-0
- Preuss J, Jortzik E, Becker K. Glucose-6-phosphate metabolism in Plasmodium falciparum. IUBMB Life. 2012;64(7):603–611. doi: 10.1002/iub.1047
- Mubaraki M. Pharmacometabolomic study of the human malaria parasite, Plasmodium falciparum: new insights into parasite biology and mode of drug action. University of Liverpool, 2013.
- Jackson KE, Habib S, Frugier M, et al. Protein translation in Plasmodium parasites. Trends Parasitol. 2011;27(10):467–476. doi: 10.1016/j.pt.2011.05.005 EDN: PIRXDX
- Wong W, Bai XC, Brown A, et al. Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife. 2014;3: e03080. doi: 10.7554/eLife.03080 EDN: UQYDBP
- Bell A, Ranford-Cartwright L. A real-time PCR assay for quantifying Plasmodium falciparum infections in the mosquito vector. Int J Parasitol. 2004;34(7):795–802. doi: 10.1016/j.ijpara.2004.03.008
- Sidhu ABS, Sun Q, Nkrumah LJ, et al. In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin. J Biol Chem. 2007;282(4):2494–2504. doi: 10.1074/jbc.M608615200
- Markota A, Kalamar Ž, Fluher J, et al. Therapeutic hyperthermia for the treatment of infection — a narrative review. Front Physiol. 2023;14:1215686. doi: 10.3389/fphys.2023.1215686 EDN: JITCWX
- Young PJ, Bellomo R. Fever in sepsis: is it cool to be hot? Crit Care. 2014;18(1):109. doi: 10.1186/cc13726 EDN: SODYVN
- Rumbus Z, Matics R, Hegyi P, et al. Fever is associated with reduced, hypothermia with increased mortality in septic patients: a meta-analysis of clinical trials. PLoS One. 2017;12(1):e0170152. doi: 10.1371/journal.pone.0170152 EDN: YWURQF
- Young PJ, Saxena M. Fever management in intensive care patients with infections. Crit Care. 2014;18(2):206. doi: 10.1186/cc13773 EDN: VRCXAR
- Urakov A. How temperature pharmacology was formed: history in personalities. J Drug Deliv Ther. 2020;10(S4):226–231. doi: 10.22270/jddt.v10i4-s.4208 EDN: ESAOFR
- Urakov AL. Thermal pharmacology: history and definition. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(1):87–96. doi: 10.17816/RCF19187-96 EDN: YIGBEQ
- Urakov A, Urakova N. Targeted temperature management in obstetrics for prevention perinatal encephalopathy. Turk J Med Sci. 2024;54(4):876–877. doi: 10.55730/1300-0144.5859 EDN: TYUCKG
- Urakova N, Urakov A, Shabanov P. Pharmacological activities of warm alkaline hydrogen peroxide solution and therapeutic potential in medicine: physical-chemical reprofiling as a promising lead for drug discovery. Anti-Infective Agents. 2024;23. doi: 10.2174/0122113525351536241122063840 EDN: ETDHHL
