Ubiquitylation in the development of somatic diseases: a mechanism of cellular regulation and a new therapeutic target

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

At the present stage of medical science, an increasing role in the pathogenesis of various groups of diseases is assigned to the mechanisms of epigenetic regulation and posttranslational modifications of proteins. One of these mechanisms is ubiquitylation, which is able to regulate the functional activity of proteins, their stability, and also influence the processes of cell death. Involvement in a large number of metabolic pathways and presently identified associations with oncological, cardiovascular, neurological, and inflammatory diseases makes ubiquitylation of the enzymes involved a promising target to develop new therapy options. In this review, we consider the effect of ubiquitination on the development of diseases of the cardiovascular, nervous systems, diabetes mellitus, as well as the development of possible treatment options.

About the authors

Aleksandr L. Urakov

Izhevsk State Medical Academy

Author for correspondence.
Email: urakoval@live.ru
ORCID iD: 0000-0002-9829-9463
SPIN-code: 1613-9660

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 281 Kommunarov sr., Izhevsk, 426034

Anton V. Tyurin

Bashkir State Medical University

Email: anton.bgmu@gmail.com
ORCID iD: 0000-0002-0841-3024
SPIN-code: 5046-3704

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Ufa

Vlas S. Shchekin

Bashkir State Medical University

Email: vlas-s@mail.ru
ORCID iD: 0000-0003-2202-7071
SPIN-code: 7796-0630
Russian Federation, Ufa

Olim A. Siddikov

Samarkand State Medical University

Email: makval81@rambler.ru
ORCID iD: 0000-0002-2619-4689

PhD

Uzbekistan, Samarkand

Ilkhomjon R. Abdurakhmonov

Samarkand State Medical University

Email: ilhomjon.lor@mail.ru
ORCID iD: 0000-0003-4409-0186

PhD

Uzbekistan, Samarkand

Renata A. Gabdrakhimova

Bashkir State Medical University

Email: renata.gabdrahimova2013@yandex.ru
ORCID iD: 0009-0007-3792-1208
Russian Federation, Ufa

Aleksandr V. Samorodov

Bashkir State Medical University

Email: avsamorodov@gmail.com
ORCID iD: 0000-0001-9302-499X
SPIN-code: 2396-1934

MD, Dr. Sci. (Medicine)

Russian Federation, Ufa

References

  1. Catic A, Ploegh HL. Ubiquitin — conserved protein or selfish gene? Trends Biochem Sci. 2005;30(11):600–604. doi: 10.1016/j.tibs.2005.09.002
  2. Kravtsova-Ivantsiv Y, Сiechanover A. Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci. 2012;125(3):539–548. doi: 10.1242/jcs.093567
  3. Bedford L, Paine S, Sheppard PW, et al. Structure, and function of the 26S proteasome. Trends Cell Biol. 2010;20(7):391–401. doi: 10.1016/j.tcb.2010.03.007
  4. Zeng W, Sun L, Jiang X, et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell. 2010;141(2):315–330. doi: 10.1016/j.cell.2010.03.029
  5. Roberts JZ, Crawford N, Longley DB. The Role of ubiquitination in apoptosis and necroptosis. Cell Death Differ. 2022;29(2):272–284. doi: 10.1038/s41418-021-00922-9
  6. Moujalled D, Strasser A, Liddell JR. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ. 2021;28(7): 2029–2044. doi: 10.1038/s41418-021-00814-y
  7. Holohan C, Van Schaeybroeck S, Longley DB. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer. 2013;13(10): 714–726. doi: 10.1038/nrc3599
  8. Kwasna D, Abdul Rehman SA, Natarajan J, et al. Discovery and characterization of ZUFSP/ZUP1, a distinct deubiquitinase class important for genome stability. Mol Cell. 2018;70(1):150–164. doi: 10.1016/j.molcel.2018.02.023
  9. Atanassov BS, Koutelou E, Dent SY. The role of deubiquitinating enzymes in chromatin regulation. FEBS Lett. 2011;585(13): 2016–2023. doi: 10.1016/j.febslet.2010.10.042
  10. Li HL, Zhuo ML, Wang D et al. Targeted cardiac overexpression of a20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation. 2007;115(14):1885–1894. doi: 10.1161/CIRCULATIONAHA.106.656835
  11. He B, Zhao YC, Gao LC, et al. Ubiquitin-specific protease 4 is an endogenous negative regulator of pathological cardiac hypertrophy. Hypertension. 2016;67(6):1237–1248. doi: 10.1161/HYPERTENSIONAHA.116.07392
  12. Ying X, Zhao Y, Yao T, et al. Novel protective role for ubiquitin-specific protease 18 in pathological cardiac remodeling. Hypertension. 2016;68(5):1160–1170. doi: 10.1161/HYPERTENSIONAHA.116.07562
  13. Dhingra R, Rabinovich-Nikitin I, Rothman S, et al. Proteasomal degradation of TRAF2 mediates mitochondrial dysfunction in doxorubicin-cardiomyopathy. Circulation. 2022;146(12):934–954. doi: 10.1161/CIRCULATIONAHA.121.058411
  14. Gisterå A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13(6):368–380. doi: 10.1038/nrneph.2017.51
  15. Soehnlein O, Libby P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20(8):589–610. doi: 10.1038/s41573-021-00198-1
  16. Fu Y, Qiu J, Wu J, et al. USP14-mediated NLRC5 upregulation inhibits endothelial cell activation and inflammation in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids. 2023;1868(5):159258. doi: 10.1016/j.bbalip.2022.159258
  17. Xia X, Hu T, He J, et al. USP10 deletion inhibits macrophage-derived foam cell formation and cellular-oxidized low density lipoprotein uptake by promoting the degradation of CD36. Aging (Albany NY). 2020;12(22):22892–22905. doi: 10.18632/aging.104003
  18. Wang B, Tang X, Yao L, et al. Disruption of USP9X in macrophages promotes foam cell formation and atherosclerosis. J Clin Invest. 2022;132(10):e154217. doi: 10.1172/JCI154217
  19. Zhang Y, Li W, Li H, et al. Circ_USP36 silencing attenuates oxidized low-density lipoprotein-induced dysfunction in endothelial cells in atherosclerosis through mediating miR-197-3p/ROBO1 axis. J Cardiovasc Pharmacol. 2021;78(5):e761–e772. doi: 10.1097/FJC.0000000000001124
  20. Liu H, Li X, Yan G. Knockdown of USP14 inhibits PDGF-BB-induced vascular smooth muscle cell dedifferentiation: via inhibiting MTOR/P70S6K signaling pathway. RSC Adv. 2019;9(63):36649–36657. doi: 10.1039/c9ra04726c.
  21. Zhang F, Xia X, Chai R, et al. Inhibition of USP14 suppresses the formation of foam cell by promoting CD36 degradation. J Cell Mol Med. 2020;24(6):3292–3302. doi: 10.1111/jcmm.15002
  22. Jean-Charles PY, Wu JH, Zhang L, et al. USP20 (Ubiquitin-Specific Protease 20) Inhibits TNF (tumor necrosis factor)-triggered smooth muscle cell inflammation and attenuates atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;38(10):2295–2305. doi: 10.1161/ATVBAHA.118.311071
  23. Li X, Wang T, Tao Y, Wang X, Li L, Liu J. MF-094, a potent and selective USP30 inhibitor, accelerates diabetic wound healing by inhibiting the NLRP3 inflammasome. Exp Cell Res. 2022;410(2):112967. doi: 10.1016/j.yexcr.2021.112967
  24. Zhang T, Wang L, Chen L. Alleviative effect of microRNA-497 on diabetic neuropathic pain in rats in relation to decreased USP15. Cell Biol Toxicol. 2023;39(5):1–16. doi: 10.1007/s10565-022-09702-8
  25. Li X, Wang T, Tao Y, Wang X, Li L, Liu J. Inhibition of USP7 suppresses advanced glycation end-induced cell cycle arrest and senescence of human umbilical vein endothelial cells through ubiquitination of p53. Acta Biochim Biophys Sin (Shanghai). 2022;54(3):311–320. doi: 10.3724/abbs.2022003
  26. Bluestone JA, Buckner JH, Herold KC. Immunotherapy: Building a bridge to a cure for type 1 diabetes. Science. 2021;373(6554): 510–516. doi: 10.1126/science.abh1654
  27. Gorrepati KDD, Lupse B, Annamalai K, et al. Loss of deubiquitinase USP1 blocks pancreatic β-Cell apoptosis by inhibiting DNA damage response. iScience. 2018;1:72–86. doi: 10.1016/j.isci.2018.02.003
  28. Pearson G, Chai B, Vozheiko T, et al. Clec16a, Nrdp1, and USP8 form a ubiquitin-dependent tripartite complex that regulates β-Cell mitophagy. Diabetes. 2018;67(2):265–277. doi: 10.2337/db17-0321
  29. Meyerovich K, Violato NM, Fukaya M, et al. MCL-1 is a key antiapoptotic protein in human and rodent pancreatic β-Cells. Diabetes. 2017;66(9):2446–2458. doi: 10.2337/db16-1252
  30. Malenczyk K, Girach F, Szodorai E, et al. A TRPV1-to-secretagogin regulatory axis controls pancreatic β-cell survival by modulating protein turnover. EMBO J. 2017;36(14):2107–2125. doi: 10.15252/embj.201695347
  31. Honke N, Shaabani N, Zhang DE, et al. Usp18 driven enforced viral replication in dendritic cells contributes to break of immunological tolerance in autoimmune diabetes. PLoS Pathog. 2013;9(10): e1003650. doi: 10.1371/journal.ppat.1003650
  32. Santin I, Moore F, Grieco FA, et al. USP18 is a key regulator of the interferon-driven gene network modulating pancreatic beta cell inflammation and apoptosis. Cell Death Dis. 2012;3(11):e419. doi: 10.1038/cddis.2012.158
  33. Santin I, Eizirik DL. Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and β-cell apoptosis. Diabetes Obes Metab. 2013;15(Suppl 3):71–81. doi: 10.1111/dom.12162
  34. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107. doi: 10.1038/nri2925
  35. Saito N, Kimura S, Miyamoto T, et al. Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Biochem Biophys Rep. 2017;9:322–329. doi: 10.1016/j.bbrep.2017.01.009
  36. Bai Y, Mo K, Wang G, et al. intervention of gastrodin in type 2 diabetes mellitus and its mechanism. Front Pharmacol. 2021;12:710722. doi: 10.3389/fphar.2021.710722
  37. Forand A, Koumakis E, Rousseau A, et al. disruption of the phosphate transporter pit1 in hepatocytes improves glucose metabolism and insulin signaling by modulating the USP7/IRS1 interaction. Cell Rep. 2016;16(10):2736–2748. doi: 10.1016/j.celrep.2016.08.012
  38. Liu B, Zhang Z, Hu Y, et al. Sustained ER stress promotes hyperglycemia by increasing glucagon action through the deubiquitinating enzyme USP14. Proc Natl Acad Sci U S A. 2019;116(43):21732–21738. doi: 10.1073/pnas.1907288116
  39. Coyne ES, Bédard N, Gong YJ, et al. The deubiquitinating enzyme USP19 modulates adipogenesis and potentiates high-fat-diet-induced obesity and glucose intolerance in mice. Diabetologia. 2019;62(1):136–146. doi: 10.1007/s00125-018-4754-4
  40. Lu XY, Shi XJ, Hu A, et al. Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Nature. 2020;588(7838): 479–484. doi: 10.1038/s41586-020-2928-y
  41. Kim A, Koo JH, Jin X, et al. Ablation of USP21 in skeletal muscle promotes oxidative fibre phenotype, inhibiting obesity and type 2 diabetes. J Cachexia Sarcopenia Muscle. 2021;12(6):1669–1689. doi: 10.1002/jcsm.12777
  42. Zhang S, Liu X, Wang J, et al. Targeting ferroptosis with miR-144-3p to attenuate pancreatic β cells dysfunction via regulating USP22/SIRT1 in type 2 diabetes. Diabetol Metab Syndr. 2022;14(1):89. doi: 10.1186/s13098-022-00852-7
  43. Niu Y, Jiang H, Yin H, et al. Hepatokine ERAP1 disturbs skeletal muscle insulin sensitivity via inhibiting USP33-mediated ADRB2 deubiquitination. Diabetes. 2022;71(5):921-933. doi: 10.2337/db21-0857
  44. Lennox G, Lowe J, Morrell K, et al. Ubiquitin is a component of neurofibrillary tangles in a variety of neurodegenerative diseases. Neurosci Lett. 1988;94(1–2):211–217. doi: 10.1016/0304-3940(88)90297-2
  45. Mori H, Kondo J, Ihara Y. Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science. 1987;235(4796): 1641–1644. doi: 10.1126/science.3029875
  46. Paulson HL, Das SS, Crino PB, et al. Machado–Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol. 1997;41(4):453–462. doi: 10.1002/ana.410410408
  47. DiAntonio A, Haghighi AP, Portman SL, et al. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature. 2001;412(6845):449–452. doi: 10.1038/35086595
  48. Ding M, Shen K. The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases. Bioessays. 2008;30(11–12):1075–1083. doi: 10.1002/bies.20843
  49. Yi JJ, Ehlers MD. Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol Rev. 2007;59(1):14–39. doi: 10.1124/pr.59.1.4
  50. Tai HC, Schuman EM. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci. 2008;9(11):826–838. doi: 10.1038/nrn2499
  51. Chen H, Polo S, Di Fiore PP, De Camilli PV. Rapid Ca2+-dependent decrease of protein ubiquitination at synapses. Proc Natl Acad Sci USA. 2003;100(25):14908–14913. doi: 10.1073/pnas.2136625100
  52. Ehlers MD. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci. 2003;6(3):231–242. doi: 10.1038/nn1013
  53. Xiao N, Li H, Luo J, et al. Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFα-induced cancer cell migration. Biochem J. 2012;441(3): 979–986. doi: 10.1042/BJ20111358
  54. Jiang X, Yu M, Ou Y, et al. Downregulation of USP4 promotes activation of microglia and subsequent neuronal inflammation in rat spinal cord after injury. Neurochem Res. 2017;42(11):3245–3253. doi: 10.1007/s11064-017-2361-2
  55. Qin N, Han F, Li L, et al. Deubiquitinating enzyme 4 facilitates chemoresistance in glioblastoma by inhibiting P53 activity. Oncol Lett. 2019;17(1):958–964. doi: 10.3892/ol.2018.9654
  56. Everington EA, Gibbard AG, Swinny JD, Seifi M. Molecular characterization of GABA-A receptor subunit diversity within major peripheral organs and their plasticity in response to early life psychosocial stress. Front Mol Neurosci. 2018;11:18. doi: 10.3389/fnmol.2018.00018
  57. Lappe-Siefke C, Loebrich S, Hevers W, et al. The ataxia (AXJ) mutation causes abnormal GABAA receptor turnover in mice. PLoS Genet. 2009;5(9): e1000631. doi: 10.1371/journal.pgen.1000631
  58. Anderson C, Crimmins S, Wilson JA, et al. Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J Neurochem. 2005;95(3):724–731. doi: 10.1111/j.1471-4159.2005.03409.x
  59. Chen PC, Qin LN, Li XM, et al. The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J Neurosci. 2009;29(35):10909–10919. doi: 10.1523/JNEUROSCI.2635-09.2009
  60. Vaden JH, Bhattacharyya BJ, Chen PC, et al. Ubiquitin-specific protease 14 regulates c-Jun N-terminal kinase signaling at the neuromuscular junction. Mol Neurodegener. 2015;10:3. doi: 10.1186/1750-1326-10-3
  61. Colland F. The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem Soc Trans. 2010;38(Pt 1):137–143. doi: 10.1042/BST0380137
  62. Chen RH, Chen YH, Huang TY. Ubiquitin-mediated regulation of autophagy. J Biomed Sci. 2019;26(1):80. doi: 10.1186/s12929-019-0569-y
  63. Lee BH, Lee MJ, Park S, et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 2010;467(7312):179–184. doi: 10.1038/nature09299
  64. Karpel-Massler G, Banu MA, Shu C, et al. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo. Oncotarget. 2016;7(11):12791–12805. doi: 10.18632/oncotarget.7302
  65. Hospenthal MK, Mevissen TET, Komander D. Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nat Protoc. 2015;10(2):349–361. doi: 10.1038/nprot.2015.018
  66. Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–229. doi: 10.1146/annurev-biochem-060310-170328
  67. Wilson SM, Bhattacharyya B, Rachel RA, et al. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat Genet. 2002;32(3):420–425. doi: 10.1038/ng1006
  68. Kerrisk Campbell M, Sheng M. USP8 deubiquitinates SHANK3 to control synapse density and SHANK3 activity-dependent protein levels. J Neurosci. 2018;38(23):5289–5301. doi: 10.1523/JNEUROSCI.3305-17.2018
  69. Yeates EF, Tesco G. The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation. J Biol Chem. 2016;291(30):15753–15766. doi: 10.1074/jbc.M116.718023
  70. Cockram PE, Kist M, Prakash S, et al. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 2021;28(2):591–605. doi: 10.1038/s41418-020-00708-5
  71. Chen S, Liu Y, Zhou H. Advances in the development ubiquitin-specific peptidase (USP) inhibitors. Int J Mol Sci. 2021;22(9):4546. doi: 10.3390/ijms22094546
  72. Xu X, Xia J, Zhao S, et al. Qing-Fei-Pai-Du decoction and wogonoside exert anti-inflammatory action through down-regulating USP14 to promote the degradation of activating transcription factor 2. FASEB J. 2021;35(9): e21870. doi: 10.1096/fj.202100370RR
  73. Zou M, Zeng QS, Nie J, et al. The role of E3 ubiquitin ligases and deubiquitinases in inflammatory bowel disease: friend or foe? Front Immunol. 2021;12:769167. doi: 10.3389/fimmu.2021.769167
  74. Gao H, Yin J, Ji C, et al. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. J Exp Clin Cancer Res. 2023;42(1):225. doi: 10.1186/s13046-023-02805-y
  75. Wang F, Gao Y, Zhou L, et al. USP30: structure, emerging physiological role, and target inhibition. Front Pharmacol. 2022;13:851654. doi: 10.3389/fphar.2022.851654

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».