Medical and social profile of patients with hypertensive (hypertension) disease with predominant renal involvement according to the dataset data
- Authors: Kasimovskaya N.A.1, Zotova A.A.1, Krivetskaya M.V.1, Ulyanova N.A.1, Morugina O.I.1, Kasimovsky K.V.1, Poddubskaya E.V.1
-
Affiliations:
- I.M. Sechenov First Moscow State Medical University
- Issue: Vol 42, No 5 (2025)
- Pages: 89-101
- Section: Preventive and social medicine
- URL: https://bakhtiniada.ru/PMJ/article/view/351534
- DOI: https://doi.org/10.17816/pmj42589-101
- ID: 351534
Cite item
Full Text
Abstract
Objective. To present, on the basis of the dataset, the medical and social profile of patients with hypertensive disease (hypertension) with predominant renal involvement and to consider the diagnostic significance of some biomarkers of this disease.
Materials and methods. The analysis of the medical and social profile of 436 patients diagnosed with hypertensive disease (hypertension) with predominant renal involvement was conducted according to the dataset. In our research, combined features by age (18–76 years), sex (male, female), anthropometric (height, weight status, body mass index) and clinical (heart rate, blood pressure, blood creatinine, urinalysis (glomerular filtration rate, protein, density, pH)) characteristics were evaluated.
Results. The medical and social profile of patients with hypertensive disease (hypertension) with predominant renal involvement is presented by age groups and sex, including anthropometric, clinical and social characteristics according to the dataset (male and female, respectively: aged 18–34 (25.9 %; 5.7 %), 35–54 (17.2 %;14.9 %), 55–76 (25.7 %; 10.6 %)). The average duration of treatment was 13.8 ± 5.8 days. In our opinion, biomarkers developed on small samples without taking into account the sex and age of patients with this combined pathology require additional research using datasets and artificial intelligence.
Conclusions. Large amounts of datasets form the medical and social profile of a patient with a combined pathology, combining the necessary anthropometric and clinical characteristics for the analysis, which allows to integrate information about the patient into artificial intelligence for machine learning and contributes to improving medical care.
Full Text
##article.viewOnOriginalSite##About the authors
N. A. Kasimovskaya
I.M. Sechenov First Moscow State Medical University
Author for correspondence.
Email: kasimovskaya_n_a@staff.sechenov.ru
ORCID iD: 0000-0002-1046-4349
SPIN-code: 7337-2930
DSc (Medicine), Professor, Head of the Department of Nursing Management and Social Work of the Institute of Psychological and Social Care
Russian Federation, MoscowA. A. Zotova
I.M. Sechenov First Moscow State Medical University
Email: kasimovskaya_n_a@staff.sechenov.ru
ORCID iD: 0000-0001-6348-5963
Chief Nurse of University Clinical Hospital №3
Russian Federation, MoscowM. V. Krivetskaya
I.M. Sechenov First Moscow State Medical University
Email: kasimovskaya_n_a@staff.sechenov.ru
ORCID iD: 0000-0001-8351-5461
SPIN-code: 1204-6531
Assistant of the Department of Nursing Management and Social Work of the Institute of Psychological and Social Care
Russian Federation, MoscowN. A. Ulyanova
I.M. Sechenov First Moscow State Medical University
Email: kasimovskaya_n_a@staff.sechenov.ru
ORCID iD: 0000-0002-8497-8238
SPIN-code: 8082-9431
Assistant of the Department of Nursing Management and Social Work of the Institute of Psychological and Social Care
Russian Federation, MoscowO. I. Morugina
I.M. Sechenov First Moscow State Medical University
Email: kasimovskaya_n_a@staff.sechenov.ru
ORCID iD: 0000-0002-3593-6947
SPIN-code: 4870-0572
Assistant of the Department of Nursing Management and Social Work of the Institute of Psychological and Social Care
Russian Federation, MoscowK. V. Kasimovsky
I.M. Sechenov First Moscow State Medical University
Email: kasimovskaya_n_a@staff.sechenov.ru
ORCID iD: 0009-0000-5476-3132
Lecturer of the Department of Nursing Management and Social Work of the Institute of Psychological and Social Care
Russian Federation, MoscowE. V. Poddubskaya
I.M. Sechenov First Moscow State Medical University
Email: kasimovskaya_n_a@staff.sechenov.ru
ORCID iD: 0000-0001-6476-6337
SPIN-code: 8492-3712
PhD (Medicine), Chief Physician of University Clinical Hospital №3
Russian Federation, MoscowReferences
- Бурсов А.И., Сафонова Д.М. Исследование изображений в открытых датасетах глазного дна при диабетической ретинопатии, предназначенных для обучения нейросетевых алгоритмов. Сибирский журнал клинической и экспериментальной медицины 2025; 40 (1): 218–225. doi: 10.29001/2073-8552-2025-40-1-218-225 / Bursov A.I., Safonova D.M. Issledovanie izobrazhenij v otkrytyh datasetah glaznogo dna pri diabeticheskoj retinopatii, prednaznachennyh dlja obuchenija nejrosetevyh algoritmov. Siberian Journal of Clinical and Experimental Medicine 2025; 40 (1): 218–225. doi: 10.29001/2073-8552-2025-40-1-218-225 (in Russian).
- Пугачев П.С., Гусев А.В., Кобякова О.С., Кадыров Ф.Н., Гаврилов Д.В., Новицкий Р.Э., Владзимирский А.В. Мировые тренды цифровой трансформации отрасли здравоохранения. Национальное здравоохранение 2021; 2 (2): 5–12. doi: 10.47093/2713-069X.2021.2.2.5-12 / Pugachev P.S., Gusev A.V., Kobyakova O.S., Kadyrov F.N., Gavrilov D.V., Novitsky R.E., Vladzimirsky A.V. Global trends in digital transformation of the healthcare industry. National Health 2021; 2 (2): 5–12. doi: 10.47093/2713-069X.2021.2.2.5-12 (in Russian).
- Ханов А.М., Гусев А.В., Тюрганов А.Г. Искусственный интеллект в здравоохранении России: сбор и подготовка данных для машинного обучения. Российский журнал телемедицины и электронного здравоохранения 2023; 9 (4): 7–13. doi: 10.29188/2712-9217-2023-9-4-7-13 / Hanov A.M., Gusev A.V., Tjurganov A.G. Iskusstvennyj intellekt v zdravoohranenii Rossii: sbor i podgotovka dannyh dlja mashinnogo obuchenija. Russian Journal of Telemedicine and eHealth 2023; 9 (4): 7–13. doi: 10.29188/2712-9217-2023-9-4-7-13 (in Russian).
- Lewington S., Clarke R., Qizibash N. et al. Prospective Studies Collaboration. Age-specific relevance of usuale blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–13.
- Haroun M.K., Jaar B.G., Hoffman S.C., Comstock G.W., Klag M.J., Coresh J. Risk factors for chronic kidney disease: a prospective study of 23,534 men and women in Washington County, Maryland. J Am Soc Nephrol 2003; 14 (11): 2934–2941.
- Segura J., Campo C., Gil P., Roldán C., Vigil L., Rodicio J.L. et al. Development of chronic kidney disease and cardiovascular prognosis in essential hypertensive patients. J Am Soc Nephrol 2004; 15 (6): 1616–1622.
- Ощепкова Е.В., Долгушева Ю.А., Жернакова Ю.В., Чазова И.Е., Шальнова С.А., Яровая Е.Б. и др. Распространенность нарушения функции почек при артериальной гипертонии (по данным эпидемиологического исследования ЭССЕ-РФ). Системные гипертензии 2015; 12 (3): 19–24. / Oshchepkova E.V., Dolgusheva Iu.A., Zhernakova Iu.V., Chazova I.E., Shal’nova S.A., Iarovaia E.B. et al. The prevalence of renal dysfunction in arterial hypertension (in the framework of the ESSE-RF study). Systemic Hypertension 2015; 12 (3): 9–24 (in Russian).
- Миронова С.А., Юдина Ю.С., Ионов М.В., Авдонина Н.Г., Емельянов И.В., Васильева Е.Ю., Звартау Н.Э., Конради А.О. Маркеры поражения почек у больных артериальной гипертензией: новые против старых. Артериальная гипертензия 2018; 24 (2): 223–236. doi: 10.18705/1607-419X-2018-24-2-223-236 / Mironova S.A., Judina Ju.S., Ionov M.V., Avdonina N.G., Emel'janov I.V., Vasil'eva E.Ju., Zvartau N.Je., Konradi A.O. Biomarkers of kidney injury in hypertension: conventional versus novel. Arterial'naja gipertenzija 2018; 24 (2): 223–236. doi: 10.18705/1607-419X-2018-24-2-223-236 (in Russian).
- Торгунаков А.П. Гипертоническая болезнь глазами хирурга. Медицина в Кузбассе 2007; 2: 6–12. / Torgunakov A.P. Hypertension in the eyes of a surgeon. Medicine in Kuzbass 2007; 2: 6–12 (in Russian).
- Poplin R., Varadarajan A.V., Blumer K. et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2018; 2 (3): 158–164. doi: 10.1038/s41551-018-0195-0
- Quesada J.A., Lopez-Pineda A., Gil-Guillen V.F. et al. Machine learning to predict cardio vascular risk. Int J Clin Pract 2019; 73 (10): E13389. doi: 10.1111/ijcp.13389
- Zack C.J., Senecal C., Kinar Y. et al. Leveraging machine learning techniques to forecast patient prognosis after percutaneous coronary intervention. JACC Cardiovasc Interv 2019; 12 (14): 1304–1311. doi: 10.1016/j.jcin.2019.02.035
- Моисеев B.C., Мухин Н.А., Кобалава Ж.Д., Бобкова И.Н., Виллевальде С.В., Ефремовцева М.А. и др. Cердечно-сосудистый риск и хроническая болезнь почек: стратегии кардионефропротекции. Российский кардиологический журнал 2014; 8 (112): 7–37. doi: 10.15829/1560-4071-2014- 8-7-37 / Moiseev V.C., Mukhin N.A., Kobalava J.D., Bobkova I.N., Villevalde S.V., Efremovtseva M.A. et al. Cardiovascular risk and chronic kidney disease: cardio-nephroprotection strategies. Russian Journal of Cardiology 2014; 8 (112): 7–37. doi: 10.15829/1560-4071-2014- 8-7-37 (in Russian).
- Миронова С.А., Юдина Ю.С., Ионов М.В., Авдонина Н.Г., Емельянов И.В., Васильева Е.Ю., Звартау Н.Э., Конради А.О. Маркеры поражения почек у больных артериальной гипертензией: новые против старых. Артериальная гипертензия 2018; 24 (2): 223–236. doi: 10.18705/1607-419X-2018-24-2-223-236 / Mironova S.A., Judina Ju.S., Ionov M.V., Avdonina N.G., Emel'janov I.V., Vasil'eva E.Ju., Zvartau N.Je., Konradi A.O. Markery porazhenija pochek u bol'nyh arterial'noj gipertenziej: novye protiv staryh. Arterial'naja gipertenzija 2018; 24 (2): 223–236. doi: 10.18705/1607-419X-2018-24-2-223-236 (in Russian).
- Милюков В.Е., Жарикова Т.С. Критерии формирования возрастных групп пациентов в медицинских исследованиях. Клиническая медицина 2015; 11: 5–1. / Miljukov V.E., Zharikova T.S. Criteria for forming patient ages in medical research. Clinical Medicine 2015; 11: 5–1 (in Russian).
- Миронова С.А., Юдина Ю.С., Ионов М.В.1,2, Авдонина Н.Г., Емельянов И.В., Васильева Е.Ю., Китаева Е.А., Звартау Н.Э., Конради А.О. Взаимосвязь новых маркеров поражения почек и состояния сосудов у больных артериальной гипертензией. Российский кардиологический журнал 2019; 24 (1): 44–51. doi: 10.15829/1560-4071-2019-1-44-51 / Mironova S.A., Judina Ju.S., Ionov M.V.1,2, Avdonina N.G., Emel'janov I.V., Vasil'eva E.Ju., Kitaeva E.A., Zvartau N.Je., Konradi A.O. Novel biomarkers of kidney injury and fibrosis in patients with different severity of hypertension: relation to vascular reactivity and stiffness. Russian Journal of Cardiology 2019; 24 (1): 44–51. doi: 10.15829/1560-4071-2019-1-44-51 (in Russian).
- Кошельская О.А., Журавлева О.А. Маркеры хронической болезни почек и нарушения ренальной гемодинамики у пациентов с контролируемой артериальной гипертонией высокого риска. Российский кардиологический журнал 2018; 23 (10): 112–118. doi: 10.15829/1560-4071-2018-10-112-118 / Koshel'skaja O.A., Zhuravleva O.A. Markers of chronic kidney disease and disorders of renal hemodynamics in patients with medically-controlled arterial hypertension and high and very high cardiovascular risk. Russian Journal of Cardiology 2018; 23 (10): 112–118. doi: 10.15829/1560-4071-2018-10-112-118 (in Russian).
- Батюшин М.М. Методические основы оценки скорости клубочковой фильтрации в урологической практике. Вестник урологии 2017; 5 (1): 42–51. doi: 10.21886/2308-6424-2017-5-1-42-51 / Batjushin M.M. Methodical bases of estimation glomerular filtration rate in urological practice. Vestnik urologii 2017; 5 (1): 42–51. doi: 10.21886/2308-6424-2017-5-1-42-51 (in Russian).
- Клинические практические рекомендации KDIGO 2012 по диагностике и лечению хронической болезни почек. Нефрология и диализ 2017; 19 (1): 23–206. doi: 10.28996/1680-4422-2017-1-22-206 / KGIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Nephrology and Dialysis 2017; 19 (1): 23–206. doi: 10.28996/1680-4422-2017-1-22-206 (in Russian).
Supplementary files


