Проблемы и перспективы изучения раковых заболеваний на моделях индуцированных плюрипотентных стволовых клеток

Обложка

Цитировать

Полный текст

Аннотация

Индуцированные плюрипотентные стволовые клетки (ИПСК) представляют ряд новых возможностей как универсальный инструмент для моделирования различных типов рака и для фармакологических тестирований. Исследователи могут генерировать раковые клетки, полученные из ИПСК для изучения онкогенеза и молекулярных механизмов, лежащих в основе различных типов рака. Этот подход дает уникальную возможность наблюдать и управлять прогрессированием рака в контролируемой среде.

Изучены возможности, которые модели ИПСК могут предложить, в отличие от тех, что доступны на примере существующих клеточных систем и животных моделей, а также проанализированы существующие проблемы в этой области, позволяющие принять меры по совершенствованию и более широкому внедрению данной технологии.

Об авторах

Ромеш Иванович Кокаев

Институт биомедицинских исследований – филиал Федерального научного центра «Владикавказский научный центр Российской академии наук»; Северо-Осетинская государственная медицинская академия

Email: romesh_k@mail.ru
ORCID iD: 0000-0002-2326-1348

кандидат медицинских наук, заведующий лабораторией, доцент кафедры нормальной физиологии

Россия, РСО-Алания; Владикавказ

Ахмед Али-Хажиевич Ислаев

Северо-Осетинская государственная медицинская академия

Email: stivm95555@gmail.com
ORCID iD: 0009-0003-7391-4436

студент

Россия, Владикавказ

Хава Алихановна Галаматова

Северо-Осетинская государственная медицинская академия

Email: khava.galamatova@bk.ru
ORCID iD: 0009-0005-0848-7217

студентка

Россия, Владикавказ

Хава Маербековна Вахаева

Северо-Осетинская государственная медицинская академия

Email: vakhayeva02@mail.ru
ORCID iD: 0009-0008-2081-9650

студентка

Россия, Владикавказ

Селима Гайрбековна Табалаева

Северо-Осетинская государственная медицинская академия

Email: tabalaevaselima202@mail.ru
ORCID iD: 0009-0004-2102-2046

студентка

Россия, Владикавказ

Заира Хан-Пашаевна Бубаева

Северо-Осетинская государственная медицинская академия

Email: zairabubaeva@mail.ru
ORCID iD: 0009-0006-6782-0777

студентка

Россия, Владикавказ

Руми Мовлаевна Дудагова

Северо-Осетинская государственная медицинская академия

Email: dudagova.rumi@mail.ru
ORCID iD: 0009-0001-6891-1033

студентка

Россия, Владикавказ

Резеда Сидиковна Тазбаева

Северо-Осетинская государственная медицинская академия

Email: rtazbayeva@inbox.ru
ORCID iD: 0009-0007-0404-5491

студентка

Россия, Владикавказ

Макка Тахировна Шапиянова

Северо-Осетинская государственная медицинская академия

Email: mshapiyanova@mail.ru
ORCID iD: 0009-0009-7132-2086

студентка

Россия, Владикавказ

Ирина Анатольевна Кодзаева

Северо-Осетинская государственная медицинская академия

Email: irinakodzaeva2002@mail.ru
ORCID iD: 0009-0002-2847-127X

студентка

Владикавказ

Иман Исламовна Мусаева

Северо-Осетинская государственная медицинская академия

Автор, ответственный за переписку.
Email: musaevaiman2002@mail.ru
ORCID iD: 0009-0007-7846-8163

студентка

Россия, Владикавказ

Элина Альвиевна Карагодина

Северо-Осетинская государственная медицинская академия

Email: giligermo@gmail.com
ORCID iD: 0009-0007-4792-1930

студентка

Россия, Владикавказ

Список литературы

  1. Медведев С.П. Индуцированные плюрипотентные стволовые клетки, редактирование геномов и генетически кодируемые биосенсоры: синтез технологий для решения биомедицинских задач. Гены и Клетки 2020; 15 (S3): 141–142. EDN UIHCHX. / Medvedev S.P.
  2. Induced pluripotent stem cells, genome editing and genetically encoded biosensors: synthesis of technologies for solving biomedical problems. Geni i Kletki 2020; 15 (S3): 141–142. EDN UIHCHX (in Russian).
  3. Miura K., Oiwa Y., Kawamura Y. Induced pluripotent stem cells from cancer-resistant
  4. naked mole-rats. Adv Exp Med Biol. 2021; 1319: 329–339. doi: 10.1007/978-3-030-65943-1_13. PMID: 34424523.
  5. Yagi M., Horng J.E., Hochedlinger K. Manipulating cell fate through reprogramming: approaches and applications. Development. 2024; 151 (19): dev203090. doi: 10.1242/dev.203090. Epub 2024 Sep 30. PMID: 39348466; PMCID: PMC11463964.
  6. Nguyen R., Da Won Bae S., Qiao L., George J. Developing liver organoids from induced pluripotent stem cells (iPSCs): An alternative source of organoid generation for liver cancer research. Cancer Lett. 2021 Jun 28; 508: 13–17. doi: 10.1016/j.canlet.2021.03.017. Epub 2021 Mar 23. PMID: 33771683.
  7. Ковалев В.А., Южакова Е.А. Использование ИПСК для моделирования нейродегенеративных заболеваний на примере болезни Гентингтона. Forcipe 2022; 5 (S3): 198–199. / Kovalev V.A., Yujakova E.A. The use of induced pluripotent stem cells for modeling neurodegenerative diseases using Huntington's disease as an example. Forcipe 2022; 5 (S3): 198–199 (in Russian).
  8. Gania Z., Noorintan S.T., Septiari N.P.D.P., Fitriany D.S., Torizal F.G. Strategies for generating human pluripotent stem cell-derived-organoid culture for disease modeling,
  9. drug screening, and regenerative therapy. Future Pharmacology. 2022; 2 (3): 360–376. doi: 10.3390/futurepharmacol2030025
  10. Мележникова Н.О., Домнина А.П., Горячая Т.С., Петросян М.А. Клеточные технологии в фармакологических исследованиях. Настоящее и будущее. Цитология 2018; 60 (9): 673–678. doi: 10.7868/S0041377118090023. EDN PHXPJF. / Melejnikova N.O., Domnina A.P., Goryachaya T.S., Petrosyan M.A. Cell technologies in pharmacological research. Present and future. Citologiya 2018; 60 (9): 673–678. doi: 10.7868/S0041377118090023. EDN PHXPJF (in Russian).
  11. Liu X., Li C., Zheng K. et al. Chromosomal aberration arises during somatic reprogramming to pluripotent stem cells. Cell Div. 2020; 15 (1): 12. doi: 10.1186/s13008-020-00068-z. PMID: 33292330; PMCID: PMC7641821.
  12. Uhlmann C., Nickel A.C., Picard D. et al. Progenitor cells derived from gene-engineered human induced pluripotent stem cells as synthetic cancer cell alternatives for in vitro pharmacology. Biotechnol J. 2022; 17 (6): e2100693. doi: 10.1002/biot.202100693. Epub 2022 Apr 3. PMID: 35334498.
  13. Peng T., Ma X., Hua W. et al. Individualized patient tumor organoids faithfully preserve human brain tumor ecosystems and predict patient response to therapy. Cell Stem Cell. 2025; 32 (4): 652–669.e11. doi: 10.1016/j.stem.2025.01.002. Epub 2025 Feb 11. PMID: 39938519.
  14. Wang H., Calvisi D.F., Chen X. Organoids for the study of liver cancer. Semin Liver Dis. 2021; 41 (1): 19–27. doi: 10.1055/s-0040-1719176. Epub 2021 Feb 9. PMID: 33764482; PMCID: PMC8522208.
  15. Yao C., Yao R., Luo H., Shuai L. Germline specification from pluripotent stem cells. Stem Cell Res Ther. 2022; 13 (1): 74. doi: 10.1186/s13287-022-02750-1. PMID: 35189957; PMCID: PMC8862564.
  16. Ito K., Nagata K., Ohta S. et al. The oncogene-dependent resistance to reprogramming unveils cancer therapeutic targets. Cell Rep. 2022; 39 (4): 110721. doi: 10.1016/j.celrep.2022.110721. PMID: 35476996.
  17. Majumder B. et al. Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nature communications 2015; 6 (1): 6169.
  18. Gould S.E., Junttila M.R., de Sauvage F.J. Translational value of mouse models in oncology drug development. Nature medicine 2015; 21 (5): 431–439.
  19. Day C.P., Merlino G., Van Dyke T. Preclinical mouse cancer models: a maze of opportunities and challenges. Cell. 2015; 163 (1): 39–53. doi: 10.1016/j.cell.2015.08.068. PMID: 26406370; PMCID: PMC4583714.
  20. Calejo I., Heinrich M.A., Zambito G., Mezzanotte L., Prakash J., Moreira Teixeira L. Advancing tumor microenvironment research by combining organs-on-chips and biosensors. Adv Exp Med Biol. 2022; 1379: 171–203. doi: 10.1007/978-3-031-04039-9_7. PMID: 35760992.
  21. Chehelgerdi M., Behdarvand Dehkordi F. et al. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer. 2023; 22 (1): 189. doi: 10.1186/s12943-023-01873-0. PMID: 38017433; PMCID: PMC10683363.
  22. Sarker D.B., Xue Y., Mahmud F., Jocelyn J.A., Sang Q.A. Interconversion of cancer cells and induced pluripotent stem cells. Cells 2024; 13 (2): 125. doi: 10.3390/cells13020125. PMID: 38247819; PMCID: PMC10814385.
  23. Aldoghachi A.F., Chong Z.X., Yeap S.K., Cheong S.K., Ho W.Y., Ong A.H.K. Stem cells for cancer therapy: Translating the uncertainties and possibilities of stem cell properties into opportunities for effective cancer therapy. Int J Mol Sci. 2023; 24 (2): 1012. doi: 10.3390/ijms24021012. PMID: 36674525; PMCID: PMC9864033.
  24. Marcoux P., Hwang J.W., Desterke C., Imeri J., Bennaceur-Griscelli A., Turhan A.G. Modeling RET-rearranged non-small cell lung cancer (NSCLC): Generation of lung progenitor cells (LPCs) from patient-derived induced pluripotent stem cells (iPSCs). Cells 2023; 12 (24): 2847. doi: 10.3390/cells12242847. PMID: 38132167; PMCID: PMC10742233.
  25. Ku C.C., Wuputra K., Pan J.B. et al. Generation of human stomach cancer iPSC-derived organoids induced by helicobacter pylori infection and their application to gastric cancer research. Cells 2022; 11 (2): 184. doi: 10.3390/cells11020184. PMID: 35053302; PMCID: PMC8773924.
  26. Wuputra K., Ku C.C., Kato K., Wu D.C., Saito S., Yokoyama K.K. Translational models of
  27. 3-D organoids and cancer stem cells in gastric cancer research. Stem Cell Res Ther. 2021; 12 (1): 492. doi: 10.1186/s13287-021-02521-4. PMID: 34488885; PMCID: PMC8420044.
  28. Loh J.K., Wang M.L., Cheong S.K. et al. The study of cancer cell in stromal environment through induced pluripotent stem cell-derived mesenchymal stem cells. J Chin Med Assoc. 2022; 85 (8): 821–830. doi: 10.1097/JCMA.0000000000000759. Epub 2022 Jun 6. PMID: 35666590.
  29. Wang T., Pine A.R., Kotini A.G. et al. Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets. Cell Stem Cell. 2021; 28 (6): 1074–1089.e7. doi: 10.1016/j.stem.2021.01.011. Epub 2021 Feb 10. PMID: 33571445; PMCID: PMC8178190.
  30. Schloo C., Kutscher L.M. Modeling brain and neural crest neoplasms with human pluripotent stem cells. Neuro Oncol. 2023; 25 (7): 1225–1235. doi: 10.1093/neuonc/noad034. PMID: 36757217; PMCID: PMC10326493.
  31. Liu R., Qian K., Xiao Y., Jiang W. Generation of two induced pluripotent stem cell lines from blood cells of a prostate cancer patient carrying germline mutation in CHEK2. Stem Cell Res. 2021; 53: 102299. doi: 10.1016/j.scr.2021.102299. Epub 2021 Mar 18. PMID: 33780728.
  32. Blelloch R.H., Hochedlinger K., Yamada Y. et al. Nuclear cloning of embryonal carcinoma cells. Proc Natl Acad Sci U S A. 2004; 101 (39): 13985–90. doi: 10.1073/pnas.0405015101. Epub 2004 Aug 11. Erratum in: Proc Natl Acad Sci U S A. 2004 Sep 28; 101 (39): 14305. PMID: 15306687; PMCID: PMC521109.
  33. Roy N.S., Kumari M., Alam K. et al. Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. Prog Biomed Eng (Bristol) 2024; 7 (1). doi: 10.1088/2516-1091/ad9dcb. PMID: 39662055.
  34. Granados K., Poelchen J., Novak D., Utikal J. Cellular reprogramming-A model for melanoma cellular plasticity. Int J Mol Sci. 2020; 21 (21): 8274. doi: 10.3390/ijms21218274. PMID: 33167306; PMCID: PMC7663830.
  35. Cerneckis J., Cai H., Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther. 2024; 9 (1): 112. doi: 10.1038/s41392-024-01809-0. PMID: 38670977; PMCID: PMC11053163.
  36. Mo J., Anastasaki C., Chen Z. et al. Humanized neurofibroma model from induced pluripotent stem cells delineates tumor pathogenesis and developmental origins. J Clin Invest. 2021; 131 (1): e139807. doi: 10.1172/JCI139807. PMID: 33108355; PMCID: PMC7773354.
  37. Kim J.H., Hong J.H., Kang K.W. et al. Generation of the human pluripotent stem cell lines KUMi005-A from a patients with multiple myeloma. Stem Cell Res. 2022; 65: 102939. doi: 10.1016/j.scr.2022.102939. Epub 2022 Oct 13. PMID: 36332466.
  38. Corominas-Faja B., Cufí S., Oliveras-Ferraros C. et al. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway. Cell Cycle 2013; 12 (18): 3109–24. doi: 10.4161/cc.26173. Epub 2013 Aug 21. PMID: 23974095; PMCID: PMC3875684.
  39. Becklin K.L., Draper G.M., Madden R.A. et al. Developing bottom-up induced pluripotent stem cell derived solid tumor models using precision genome editing technologies. CRISPR J. 2022; 5 (4): 517–535. doi: 10.1089/crispr.2022.0032. PMID: 35972367; PMCID: PMC9529369.
  40. Sidhu I., Barwe S.P., Pillai R.K., Gopalakrishnapillai A. Harnessing the power of induced pluripotent stem cells and gene editing technology: Therapeutic implications in hematological malignancies. Cells 2021; 10 (10): 2698. doi: 10.3390/cells10102698. PMID: 34685678; PMCID: PMC8534597.
  41. Guo T., Wei Q. Cell reprogramming techniques: Contributions to cancer therapy. Cell Reprogram. 2023; 25 (4): 142–153. doi: 10.1089/cell.2023.0011. Epub 2023 Aug 3. PMID: 37530737.
  42. Tatwavedi D., Pellagatti A., Boultwood J. Recent advances in the application of induced pluripotent stem cell technology to the study of myeloid malignancies. Adv Biol Regul. 2024; 91: 100993. doi: 10.1016/j.jbior.2023.100993. Epub 2023 Sep 27. PMID: 37827894.
  43. Takeuchi K., Tabe S., Takahashi K. et al. Incorporation of human iPSC-derived stromal cells creates a pancreatic cancer organoid with heterogeneous cancer-associated fibroblasts. Cell Rep. 2023; 42 (11): 113420. doi: 10.1016/j.celrep.2023.113420. Epub 2023 Nov 12. PMID: 37955987.
  44. Telliam G., Desterke C., Imeri J. et al. Modeling Global genomic instability in chronic myeloid leukemia (CML) using patient-derived induced pluripotent stem cells (iPSCs). Cancers (Basel). 2023; 15 (9): 2594. doi: 10.3390/cancers15092594. PMID: 37174060; PMCID: PMC10177163.
  45. Cerneckis J., Cai H., Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther. 2024; 9 (1): 112. doi: 10.1038/s41392-024-01809-0. PMID: 38670977; PMCID: PMC11053163.
  46. He R., Weng Z., Liu Y. et al. Application of induced pluripotent stem cells in malignant solid tumors. Stem Cell Rev Rep. 2023; 19 (8): 2557–2575. doi: 10.1007/s12015-023-10633-y. Epub 2023 Sep 27. PMID: 37755647; PMCID: PMC10661832.
  47. Deng W., Jacobson E.C., Collier A.J., Plath K. The transcription factor code in iPSC reprogramming. Curr Opin Genet Dev. 2021; 70: 89–96. doi: 10.1016/j.gde.2021.06.003. Epub 2021 Jul 8. PMID: 34246082; PMCID: PMC9469655.
  48. Shamsian A., Sahebnasagh R., Norouzy A. et al. Cancer cells as a new source of induced pluripotent stem cells. Stem Cell Res Ther. 2022; 13 (1): 459. doi: 10.1186/s13287-022-03145-y. PMID: 36064437; PMCID: PMC9446809.
  49. Giallongo S., Rehakova D., Raffaele M. et al. Redox and epigenetics in human pluripotent stem cells differentiation. Antioxid Redox Signal. 2021; 34 (4): 335–349. doi: 10.1089/ars.2019.7983. Epub 2020 Jul 17. PMID: 32567336.
  50. Chen K., Li Y., Wang B. et al. Patient-derived models facilitate precision medicine in liver cancer by remodeling cell-matrix interaction. Front Immunol. 2023; 14: 1101324. doi: 10.3389/fimmu.2023.1101324. PMID: 37215109; PMCID: PMC10192760.
  51. Taguchi J., Shibata H., Kabata M. et al. DMRT1-mediated reprogramming drives development of cancer resembling human germ cell tumors with features of totipotency. Nat Commun. 2021; 12 (1): 5041. doi: 10.1038/s41467-021-25249-4. PMID: 34413299; PMCID: PMC8377058.
  52. Tapia N., Schöler H.R. Molecular obstacles to clinical translation of iPSCs. Cell Stem Cell. 2016; 19 (3): 298–309. doi: 10.1016/j.stem.2016.06.017. Epub 2016 Jul 21. PMID: 27452174.
  53. Krijger P.H., Di Stefano B., de Wit E. et al. Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming. Cell Stem Cell. 2016; 18 (5): 597–610. doi: 10.1016/j.stem.2016.01.007. Epub 2016 Mar 10. PMID: 26971819; PMCID: PMC4858530.
  54. Lan T., Luo M., Wei X. Mesenchymal stem/stromal cells in cancer therapy. J Hematol Oncol. 2021; 14 (1): 195. doi: 10.1186/s13045-021-01208-w. PMID: 34789315; PMCID: PMC8596342.
  55. Zhu J., Adli M., Zou J.Y. et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 2013; 152 (3): 642–54. doi: 10.1016/j.cell.2012.12.033. Epub 2013 Jan 17. PMID: 23333102; PMCID: PMC3563935.
  56. Wu Y., Chen K., Xing G. et al. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Sci Adv. 2019; 5 (11): eaax7525. doi: 10.1126/sciadv.aax7525. PMID: 31807705; PMCID: PMC6881163.
  57. Apostolou E., Hochedlinger K. Chromatin dynamics during cellular reprogramming. Nature 2013; 502 (7472): 462–71. doi: 10.1038/nature12749. PMID: 24153299; PMCID: PMC4216318.
  58. Cacchiarelli D., Trapnell C., Ziller M.J. et al. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell 2015; 162 (2): 412–424. doi: 10.1016/j.cell.2015.06.016. PMID: 26186193; PMCID: PMC4511597.
  59. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126 (4): 663–76. doi: 10.1016/j.cell.2006.07.024. Epub 2006 Aug 10. PMID: 16904174.
  60. Nefzger C.M., Rossello F.J., Chen J. et al. Cell Type of origin dictates the route to pluripotency. Cell Rep. 2017; 21 (10): 2649–2660. doi: 10.1016/j.celrep.2017.11.029. PMID: 29212013
  61. Borkent M., Bennett B.D., Lackford B. et al. A serial shRNA screen for roadblocks to reprogramming identifies the protein modifier SUMO2. Stem Cell Reports. 2016; 6 (5): 704–716. doi: 10.1016/j.stemcr.2016.02.004. Epub 2016 Mar 3. PMID: 26947976; PMCID: PMC4939549.
  62. Buckley S.M., Aranda-Orgilles B., Strikoudis A. et al. Regulation of pluripotency and cellular reprogramming by the ubiquitin-proteasome system. Cell Stem Cell. 2012; 11 (6): 783–98. doi: 10.1016/j.stem.2012.09.011. Epub 2012 Oct 25. PMID: 23103054; PMCID: PMC3549668.
  63. Qin H., Diaz A., Blouin L. et al. Systematic identification of barriers to human iPSC generation. Cell 2014; 158 (2): 449–461. doi: 10.1016/j.cell.2014.05.040. PMID: 25036638; PMCID: PMC4130998.
  64. Ray A., Joshi J.M., Sundaravadivelu P.K. et al. An Overview on promising somatic cell sources utilized for the efficient generation of induced pluripotent stem cells. Stem Cell Rev Rep. 2021; 17 (6): 1954–1974. doi: 10.1007/s12015-021-10200-3. Epub 2021 Jun 7. PMID: 34100193.
  65. Kyttälä A., Moraghebi R., Valensisi C. et al. Genetic variability overrides the impact of parental cell type and determines ipsc differentiation potential. Stem Cell Reports. 2016; 6 (2): 200–12. doi: 10.1016/j.stemcr.2015.12.009. Epub 2016 Jan 14. PMID: 26777058; PMCID: PMC4750096.
  66. Fang Y.H., Wang S.P.H., Gao Z.H. et al. Efficient cardiac differentiation of human amnio¬tic fluid-derived stem cells into induced pluripotent stem cells and their potential immune privilege. Int J Mol Sci. 2020; 21 (7): 2359. doi: 10.3390/ijms21072359. PMID: 32235313; PMCID: PMC7177657.
  67. Shamsian A., Sahebnasagh R., Norouzy A. et al. Cancer cells as a new source of induced pluripotent stem cells. Stem Cell Res Ther. 2022; 13 (1): 459. doi: 10.1186/s13287-022-03145-y. PMID: 36064437; PMCID: PMC9446809.
  68. Ghosh S., Nehme R., Barrett L.E. Greater genetic diversity is needed in human pluripotent stem cell models. Nat Commun. 2022; 13 (1): 7301. doi: 10.1038/s41467-022-34940-z. PMID: 36435871; PMCID: PMC9701202.
  69. Mishra H.K., Kalyuzhny A. Revolutionizing cancer treatments through stem cell-derived CAR T cells for immunotherapy: Opening new horizons for the future of oncology. Cells 2024; 13 (18): 1516. doi: 10.3390/cells13181516. PMID: 39329700; PMCID: PMC11430090.
  70. Aboul-Soud M.A.M., Alzahrani A.J., Mahmoud A. Induced pluripotent stem cells (iPSCs) -roles in regenerative therapies, disease modelling and drug screening. Cells 2021; 10 (9): 2319. doi: 10.3390/cells10092319. PMID: 34571968; PMCID: PMC8467501.
  71. Sterneckert J.L., Reinhardt P., Schöler H.R. Investigating human disease using stem cell models. Nat Rev Genet. 2014; 15 (9): 625–39. doi: 10.1038/nrg3764. Epub 2014 Jul 29. PMID: 25069490.
  72. Maruoka S., Ojima T., Iwamoto H. et al. Tumor RNA transfected DCs derived from iPS cells elicit cytotoxicity against cancer cells induced from colorectal cancer patients in vitro. Sci Rep. 2022; 12 (1): 3295. doi: 10.1038/s41598-022-07305-1. PMID: 35228610; PMCID: PMC8885822.
  73. Hassan G., Ohara T., Afify S.M. et al. Different pancreatic cancer microenvironments convert iPSCs into cancer stem cells exhibiting distinct plasticity with altered gene expression of metabolic pathways. J Exp Clin Cancer Res. 2022; 41 (1): 29. doi: 10.1186/s13046-021-02167-3. PMID: 35063003; PMCID: PMC8781112.
  74. Huang K.C., Chen W.T., Chen J.Y. et al. Neoantigen-augmented iPSC cancer vaccine combined with radiotherapy promotes antitumor immunity in poorly immunogenic cancers. NPJ Vaccines. 2024; 9 (1): 95. doi: 10.1038/s41541-024-00881-5. PMID: 38821980; PMCID: PMC11143272.
  75. Sami A. Next generation stem cells and their implications in cancer therapy. J Pak Med Assoc. 2023; 73 (2): S98–S104. doi: 10.47391/JPMA.AKUS-16. PMID: 36788400.
  76. Li Y.R., Dunn Z.S., Zhou Y., Lee D., Yang L. Development of stem cell-derived immune cells for off-the-shelf cancer immunotherapies. Cells 2021; 10 (12): 3497. doi: 10.3390/cells10123497. PMID: 34944002; PMCID: PMC8700013.
  77. Wang R., Zhu T., Hou B., Huang X. An iPSC-derived exosome-pulsed dendritic cell vaccine boosts antitumor immunity in melanoma. Mol Ther. 2023; 31 (8): 2376–2390. doi: 10.1016/j.ymthe.2023.06.005. Epub 2023 Jun 12. PMID: 37312452; PMCID: PMC10422017.
  78. Chakrabarty K., Shetty R., Argulwar S., Das D., Ghosh A. Induced pluripotent stem cell-based disease modeling and prospective immune therapy for coronavirus disease 2019. Cytotherapy. 2022; 24 (3): 235–248. doi: 10.1016/j.jcyt.2021.08.003. Epub 2021 Sep 14. PMID: 34656419; PMCID: PMC8437760.
  79. Kotini A.G., Carcamo S., Cruz-Rodriguez N. et al. Patient-derived ipscs faithfully represent the genetic diversity and cellular architecture of human acute myeloid leukemia. Blood
  80. Cancer Discov. 2023; 4 (4): 318–335. doi: 10.1158/2643-3230.BCD-22-0167. PMID: 37067914; PMCID: PMC10320625.
  81. Che Y.H., Lee H., Kim Y.J. New insights into the epitranscriptomic control of pluripotent stem cell fate. Exp Mol Med. 2022; 54 (10): 1643–1651. doi: 10.1038/s12276-022-00824-x. Epub 2022 Oct 21. PMID: 36266446; PMCID: PMC9636187.
  82. Lange L., Esteban M.A., Schambach A. Back to pluripotency: fully chemically induced reboot of human somatic cells. Signal Transduct Target Ther. 2022; 7 (1): 244. doi: 10.1038/s41392-022-01109-5. PMID: 35853857; PMCID: PMC9296443.
  83. Doulatov S. iPSC models of leukemia come of age. Blood Cancer Discov. 2023; 4 (4): 252–253. doi: 10.1158/2643-3230.BCD-23-0041. PMID: 37067903; PMCID: PMC10320630.
  84. Deslauriers A.G., Kotini A.G., Papapetrou E.P. Modeling leukemia stem cells with patient-derived induced pluripotent stem cells. Methods Mol Biol. 2021; 2185: 411–422. doi: 10.1007/978-1-0716-0810-4_26. PMID: 33165864; PMCID: PMC7821974.
  85. Scesa G., Adami R., Bottai D. iPSC Preparation and epigenetic memory: Does the tissue origin matter? Cells 2021; 10 (6): 1470. doi: 10.3390/cells10061470. PMID: 34208270; PMCID: PMC8230744.
  86. Li Y., Darabi R. Role of epigenetics in cellular reprogramming; from iPSCs to disease modeling and cell therapy. J Cell Biochem. 2022; 123 (2): 147–154. doi: 10.1002/jcb.30164. Epub 2021 Oct 19. PMID: 34668236; PMCID: PMC8860854.
  87. Scesa G., Adami R., Bottai D. iPSC preparation and epigenetic memory: does the tissue
  88. origin matter? Cells 2021; 10 (6): 1470. doi: 10.3390/cells10061470. PMID: 34208270; PMCID: PMC8230744.
  89. Choi S.R., Yang Y., Huang K.Y., Kong H.J., Flick M.J., Han B. Engineering of biomaterials for tumor modeling. Mater Today Adv. 2020; 8: 100117. doi: 10.1016/j.mtadv.2020.100117. Epub 2020 Nov 12. PMID: 34541484; PMCID: PMC8448271.
  90. Pandelakis M., Delgado E., Ebrahimkhani M.R. CRISPR-based synthetic transcription factors in vivo: the future of therapeutic cellular programming. Cell Syst. 2020; 10 (1): 1–14. doi: 10.1016/j.cels.2019.10.003. PMID: 31972154; PMCID: PMC7175797.
  91. Polanco A., Kuang B., Yoon S. Bioprocess technologies that preserve the quality of iPSCs. trends biotechnol. 2020; 38 (10): 1128–1140. doi: 10.1016/j.tibtech.2020.03.006. Epub 2020 Apr 5. PMID: 32941792.
  92. Reilly A., Doulatov S. Induced pluripotent stem cell models of myeloid malignancies and clonal evolution. Stem Cell Res. 2021; 52: 102195. doi: 10.1016/j.scr.2021.102195. Epub 2021 Jan 26. PMID: 33592565; PMCID: PMC10115516.
  93. Wilkinson A.C., Igarashi K.J., Nakauchi H. Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat Rev Genet. 2020; 21 (9): 541–554. doi: 10.1038/s41576-020-0241-0. Epub 2020 May 28. PMID: 32467607; PMCID: PMC7894993.
  94. Kim Y., Jeong J., Choi D. Small-molecule-mediated reprogramming: a silver lining for regenerative medicine. Exp Mol Med. 2020; 52 (2): 213–226. doi: 10.1038/s12276-020-0383-3. Epub 2020 Feb 20. PMID: 32080339; PMCID: PMC7062739.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».