Короткоцепочечные жирные кислоты: метаболизм, функции и диагностический потенциал при метаболических нарушениях
- Авторы: Иванов А.А.1, Трошина И.А.1, Голубева Т.И.1, Михайлов М.С.1
-
Учреждения:
- Тюменский государственный медицинский университет
- Выпуск: Том 41, № 6 (2024)
- Страницы: 109-119
- Раздел: Обзор литературы
- URL: https://bakhtiniada.ru/PMJ/article/view/284399
- DOI: https://doi.org/10.17816/pmj416109-119
- ID: 284399
Цитировать
Полный текст
Аннотация
Проанализирована роль короткоцепочечных жирных кислот (КЦЖК), таких как ацетат, пропионат и бутират, в поддержании здоровья желудочно-кишечного тракта, метаболизма и в развитии метаболических заболеваний, включая ожирение, сахарный диабет 2-го типа и неалкогольную жировую болезнь печени (НАЖБП).
КЦЖК образуются в результате ферментации пищевых волокон кишечной микробиотой и играют ключевую роль в регуляции множества процессов. Ацетат, пропионат и бутират влияют на метаболизм глюкозы и липидов, чувствительность к инсулину и воспалительные реакции. При НАЖБП и других метаболических нарушениях наблюдаются изменения в уровне фекальных и циркулирующих КЦЖК, что свидетельствует об их потенциале как диагностических биомаркеров. Противоречивые данные относительно их концентрации при различных стадиях заболеваний подчеркивают необходимость дальнейшего исследования для понимания их роли в патогенезе. Ось «кишечник – печень» и связь с микробными метаболитами, такими как КЦЖК, играют важную роль в развитии и прогрессировании НАЖБП.
КЦЖК могут служить перспективными диагностическими маркерами для оценки метаболических нарушений, включая НАЖБП, ожирение и диабет. Их концентрации в различных биологических средах свидетельствуют о состоянии микробиоты и могут помочь в ранней диагностике и мониторинге прогрессирования метаболических заболеваний, сердечно-сосудистых осложнений.
Полный текст
Открыть статью на сайте журналаОб авторах
А. А. Иванов
Тюменский государственный медицинский университет
Автор, ответственный за переписку.
Email: AleAndrIvanov@yandex.com
ORCID iD: 0000-0002-8029-8825
ассистент кафедры госпитальной терапии с курсом эндокринологии
Россия, ТюменьИ. А. Трошина
Тюменский государственный медицинский университет
Email: AleAndrIvanov@yandex.com
ORCID iD: 0000-0002-7772-8302
доктор медицинских наук, доцент, заведующая кафедрой госпитальной терапии с курсом эндокринологии
Россия, Тюмень
Т. И. Голубева
Тюменский государственный медицинский университет
Email: AleAndrIvanov@yandex.com
ORCID iD: 0000-0002-3909-5364
кандидат медицинских наук, врач-гастроэнтеролог, доцент кафедры госпитальной терапии с курсом эндокринологии
Россия, ТюменьМ. С. Михайлов
Тюменский государственный медицинский университет
Email: AleAndrIvanov@yandex.com
ORCID iD: 0009-0002-2254-7405
врач-терапевт
Россия, ТюменьСписок литературы
- Musso G., Gambino R., Cassader M. Gut Microbiota as a Regulator of Energy Homeostasis and Ectopic Fat Deposition: Mechanisms and Implications for Metabolic Disorders. Curr. Opin. Lipidol. 2010; 21: 76–83.
- Høverstad T. Studies of Short-Chain Fatty Acid Absorption in Man. Scand. J. Gastroenterol. 1986; 21: 257–260.
- Macfarlane S., Macfarlane G.T. Regulation of Short-Chain Fatty Acid Production. Proc. Nutr. Soc. 2003; 62: 67–72.
- Siddiqui M.T., Cresci G.A.M. The Immunomodulatory Functions of Butyrate. J. Inflamm. Res. 2021; 14: 6025–6041.
- Guilloteau P., Martin L., Eeckhaut V., Ducatelle R., Zabielski R., Van Immerseel F. From the Gut to the Peripheral Tissues: The Multiple Effects of Butyrate. Nutr. Res. Rev. 2010; 23: 366–384.
- Hosseini E., Grootaert C., Verstraete W., Van De Wiele T. Propionate as a Health-Promoting Microbial Metabolite in the Human Gut. Nutr. Rev. 2011; 69: 245–258.
- Hernández M.A.G., Canfora E.E., Jocken J.W.E., Blaak E.E. The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients 2019; 11: 1943.
- Day E.A., Ford R.J., Steinberg G.R. AMPK as a Therapeutic Target for Treating Metabolic Diseases. Trends Endocrinol. Metab. 2017; 28: 545–560.
- Dabke K., Hendrick G., Devkota S. The Gut Microbiome and Metabolic Syndrome. J. Clin. Investig. 2019; 129: 4050–4057.
- Rinella M.E., Lazarus J.V., Ratziu V., Francque S.M., Sanyal A.J., Kanwal F., Romero D., Abdelmalek M.F., Anstee Q.M., Arab J.P. et al. A Multisociety Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. J. Hepatol. 2023; 79: 1542–1556.
- Fan Y., Pedersen O. Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol. 2021; 19: 55–71.
- Park J., Kim M., Kang S.G., Jannasch A.H., Cooper B., Patterson J., Kim C.H. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 2015; 8: 80–93.
- Sivaprakasam S., Prasad P.D., Singh N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol. Ther. 2016; 164: 144–151.
- Tolhurst G., Heffron H., Lam Y.S., Parker H.E., Habib A.M., Diakogiannaki E., Cameron J., Grosse J., Reimann F., Gribble F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61: 364–371.
- Pan Q., Lin S., Li Y., Liu L., Li X., Gao X., Yan J., Gu B., Chen X., Li W., Tang X., Chen C., Guo L. A novel GLP-1 and FGF21 dual agonist has therapeutic potential for diabetes and non-alcoholic steatohepatitis. EBioMedicine 2021; 63: 103202.
- Mio K., Ogawa R., Tadenuma N., Aoe S. Arabinoxylan as well as -glucan in barley promotes GLP-1 secretion by increasing short-chain fatty acids production. Biochem. Biophys. Rep. 2022; 32: 101343.
- Li Z., Yi C.X., Katiraei S., Kooijman S., Zhou E., Chung C.K., Gao Y., van den Heuvel J.K., Meijer O.C., Berbée J.F.P., Heijink M., Giera M., Willems van Dijk K., Groen A.K., Rensen P.C.N., Wang Y. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 2018; 67: 1269–1279.
- Mollica M.P., Mattace Raso G., Cavaliere G., Trinchese G., De Filippo C., Aceto S., Prisco M., Pirozzi C., Di Guida F., Lama A., Crispino M., Tronino D., Di Vaio P., Berni Canani R., Calignano A., Meli R. Butyrate regulates liver mitochondrial function, efficiency, and dynamics in insulin-resistant obese mice. Diabetes 2017; 66: 1405–1418.
- Hu J., Lin S., Zheng B., Cheung P.C.K. Short-chain fatty acids in control of energy metabolism. Crit. Rev. Food Sci. Nutr. 2018; 58: 1243–1249.
- Konturek P.C., Harsch I.A., Konturek K., Schink M., Konturek T., Neurath M.F., Zopf Y. Gut–Liver Axis: how do gut bacteria influence the liver? Med. Sci. 2018; 6: 79.
- Albillos A., de Gottardi A., Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy. J. Hepatol. 2020; 72: 558–577.
- Ohtani N., Kawada N. Role of the gut–liver axis in liver inflammation, fibrosis, and cancer: a special focus on the gut microbiota relationship. Hepatol. Commun. 2019; 3: 456–470.
- Wang P., Li T., Niu C., Sun S., Liu D. ROS-activated MAPK/ERK pathway regulates crosstalk between Nrf2 and Hif-1 to promote IL-17D expression protecting the intestinal epithelial barrier under hyperoxia. Int. Immunopharm. 2023; 116: 109763.
- Kelly C.J., Zheng L., Campbell E.L., Saeedi B., Scholz C.C., Bayless A.J., Wilson K.E., Glover L.E., Kominsky D.J., Magnuson A., Weir T.L., Ehrentraut S.F., Pickel C., Kuhn K.A., Lanis J.M., Nguyen V., Taylor C.T., Colgan S.P. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 2015; 17: 662–671.
- Yan H., Ajuwon K.M. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One 2017; 12: e0179586.
- Macia L., Tan J., Vieira A.T., Leach K., Stanley D., Luong S., Maruya M., McKenzie C.I., Hijikata A., Wong C., Binge L., Thorburn A.N., Chevalier N., Ang C., Marino E., Robert R., Offermanns S., Teixeira M.M., Moore R.J., Flavell R.A., Fagarasan S., Mackay C.R. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 2015; 6: 6734.
- Waalen J. The Genetics of Human Obesity. Transl. Res. 2014; 164: 293–301.
- Murugesan S., Ulloa-Martínez M., Martínez-Rojano H., Galván-Rodríguez F.M., Miranda-Brito C., Romano M.C., Piña-Escobedo A., Pizano-Zárate M.L., Hoyo-Vadillo C., García-Mena J. Study of the Diversity and Short-Chain Fatty Acids Production by the Bacterial Community in Overweight and Obese Mexican Children. Eur. J. Clin. Microbiol. Infect. Dis. 2015; 34: 1337–1346.
- Ecklu-Mensah G., Choo-Kang C., Maseng M.G., Donato S., Bovet P., Viswanathan B., Bedu-Addo K., Plange-Rhule J., Oti Boateng P., Forrester T.E. Gut Microbiota and Fecal Short Chain Fatty Acids Differ with Adiposity and Country of Origin: The METS-Microbiome Study. Nat. Commun. 2023; 14: 5160.
- Schwiertz A., Taras D., Schäfer K., Beijer S., Bos N.A., Donus C., Hardt P.D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity 2010; 18: 190–195.
- Fernandes J., Su W., Rahat-Rozenbloom S., Wolever T.M.S., Comelli E.M. Adiposity, Gut Microbiota and Faecal Short Chain Fatty Acids Are Linked in Adult Humans. Nutr. Diabetes 2014; 4: e121.
- De la Cuesta-Zuluaga J., Mueller N.T., Álvarez-Quintero R., Velásquez-Mejía E.P., Sierra J.A., Corrales-Agudelo V., Carmona J.A., Abad J.M., Escobar J.S. Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients 2018; 11: 51.
- Royall D., Wolever T.M., Jeejeebhoy K.N. Clinical Significance of Colonic Fermentation. Am. J. Gastroenterol. 1990; 85: 1307–1312.
- Reshef L., Niv J., Shapiro B. Effect of Propionate on Lipogenesis in Adipose Tissue. J. Lipid Res. 1967; 8: 682–687.
- Wolever T.M., Brighenti F., Royall D., Jenkins A.L., Jenkins D.J. Effect of Rectal Infusion of Short Chain Fatty Acids in Human Subjects. Am. J. Gastroenterol. 1989; 84: 1027–1033.
- Lin H.V., Frassetto A., Kowalik E.J., Nawrocki A.R., Lu M.M., Kosinski J.R., Hubert J.A., Szeto D., Yao X., Forrest G. et al. Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms. PLoS ONE 2012; 7: e35240.
- Forslund K., Hildebrand F., Nielsen T., Falony G., Le Chatelier E., Sunagawa S., Prifti E., Vieira-Silva S., Gudmundsdottir V., Pedersen H.K., et al. Disentangling Type 2 Diabetes and Metformin Treatment Signatures in the Human Gut Microbiota. Nature 2015; 528: 262–266.
- Jocken J.W.E., González Hernández M.A., Hoebers N.T.H., van der Beek C.M., Essers Y.P.G., Blaak E.E., Canfora E.E. Short-Chain Fatty Acids Differentially Affect Intracellular Lipolysis in a Human White Adipocyte Model. Front. Endocrinol. 2017; 8: 372.
- Christiansen C.B., Gabe M.B.N., Svendsen B., Dragsted L.O., Rosenkilde M.M., Holst J.J. The Impact of Short-Chain Fatty Acids on GLP-1 and PYY Secretion from the Isolated Perfused Rat Colon. Am. J. Physiol. Gastrointest. Liver Physiol. 2018; 315: G53–G65.
- Veprik A., Laufer D., Weiss S., Rubins N., Walker M.D. GPR41 Modulates Insulin Secretion and Gene Expression in Pancreatic -Cells and Modifies Metabolic Homeostasis in Fed and Fasting States. FASEB J. 2016; 30: 3860–3869.
- Priyadarshini M., Villa S.R., Fuller M., Wicksteed B., Mackay C.R., Alquier T., Poitout V., Mancebo H., Mirmira R.G., Gilchrist A. An Acetate-Specific GPCR, FFAR2, Regulates Insulin Secretion. Mol. Endocrinol. 2015; 29: 1055–1066.
- Fushimi T., Tayama K., Fukaya M., Kitakoshi K., Nakai N., Tsukamoto Y., Sato Y. Acetic Acid Feeding Enhances Glycogen Repletion in Liver and Skeletal Muscle of Rats. J. Nutr. 2001; 131: 1973–1977.
- Li H., Gao Z., Zhang J., Ye X., Xu A., Ye J., Jia W. Sodium Butyrate Stimulates Expression of Fibroblast Growth Factor 21 in Liver by Inhibition of Histone Deacetylase 3. Diabetes 2012; 61: 797–806.
- De Vadder F., Kovatcheva-Datchary P., Goncalves D., Vinera J., Zitoun C., Duchampt A., Bäckhed F., Mithieux G. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell 2014; 156: 84–96.
- Zhao L., Lou H., Peng Y., Chen S., Zhang Y., Li X. Comprehensive Relationships between Gut Microbiome and Faecal Metabolome in Individuals with Type 2 Diabetes and Its Complications. Endocrine 2019; 66: 526–537.
- Mariño E., Richards J.L., McLeod K.H., Stanley D., Yap Y.A., Knight J., McKenzie C., Kranich J., Oliveira A.C., Rossello F.J., Gut Microbial Metabolites Limit the Frequency of Autoimmune T Cells and Protect against Type 1 Diabetes. Nat. Immunol. 2017; 18: 552–562.
- Sanna S., van Zuydam N.R., Mahajan A., Kurilshikov A., Vich Vila A., Võsa U., Mujagic Z., Masclee A.A.M., Jonkers D.M.A.E., Oosting M. et al. Causal Relationships among the Gut Microbiome, Short-Chain Fatty Acids and Metabolic Diseases. Nat. Genet. 2019; 51: 600–605.
- Bouter K., Bakker G.J., Levin E., Hartstra A.V., Kootte R.S., Udayappan S.D., Katiraei S., Bahler L., Gilijamse P.W., Tremaroli V. Differential Metabolic Effects of Oral Butyrate Treatment in Lean versus Metabolic Syndrome Subjects. Clin. Transl. Gastroenterol. 2018; 9: 155.
- Vrieze A., Van Nood E., Holleman F., Salojärvi J., Kootte R.S., Bartelsman J.F.W.M., Dallinga-Thie G.M. Transfer of Intestinal Microbiota from Lean Donors Increases Insulin Sensitivity in Individuals with Metabolic Syndrome. Gastroenterology 2012; 143: 913–916.e7.
- Komaroff A.L. The Microbiome and Risk for Obesity and Diabetes. JAMA 2017; 317: 355–356.
- Xu H., Li X., Adams H., Kubena K., Guo S. Etiology of Metabolic Syndrome and Dietary Intervention. Int. J. Mol. Sci. 2018; 20: 128.
- Day E.A., Ford R.J., Steinberg G.R. AMPK as a Therapeutic Target for Treating Metabolic Diseases. Trends Endocrinol. Metab. 2017; 28: 545–560.
- Mouzaki M., Comelli E.M., Arendt B.M., Bonengel J., Fung S.K., Fischer S.E., McGilvray I.D., Allard J.P. Intestinal Microbiota in Patients with Nonalcoholic Fatty Liver Disease. Hepatology 2013; 58: 120–127.
- Ding Y., Yanagi K., Cheng C., Alaniz R.C., Lee K., Jayaraman A. Interactions between Gut Microbiota and Non-Alcoholic Liver Disease: The Role of Microbiota-Derived Metabolites. Pharmacol. Res. 2019; 141: 521–529.
- Rau M., Rehman A., Dittrich M., Groen A.K., Hermanns H.M., Seyfried F., Beyersdorf N., Dandekar T., Rosenstiel P., Geier A. Fecal SCFAs and SCFA-Producing Bacteria in Gut Microbiome of Human NAFLD as a Putative Link to Systemic T-Cell Activation and Advanced Disease. United Eur. Gastroenterol. J. 2018; 6: 1496–1507.
- Aragonès G., Colom-Pellicer M., Aguilar C., Guiu-Jurado E., Martínez S., Sabench F., Porras J.A., Riesco D., Del Castillo D., Richart C., Circulating Microbiota-Derived Metabolites: A “liquid Biopsy? ” Int. J. Obes. 2020; 44: 875–885.
- Albillos A., de Gottardi A., Rescigno M. The Gut-Liver Axis in Liver Disease: Pathophysiological Basis for Therapy. J. Hepatol. 2020; 72: 558–577.
- Nogal A., Louca P., Zhang X., Wells P.M., Steves C.J., Spector T.D., Falchi M., Valdes A.M., Menni C. Circulating Levels of the Short-Chain Fatty Acid Acetate Mediate the Effect of the Gut Microbiome on Visceral Fat. Front. Microbiol. 2021; 12: 711359.
- Loomba R., Seguritan V., Li W., Long T., Klitgord N., Bhatt A.; Dulai P.S., Caussy C., Bettencourt R., Highlander S.K. Gut Microbiome-Based Metagenomic Signature for Non-Invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab. 2017; 25: 1054–1062.e5.
- Thing M., Werge M.P., Kimer N., Hetland L.E., Rashu E.B., Nabilou P., Junker A.E., Galsgaard E.D., Bendtsen F., Laupsa-Borge J. Targeted Metabolomics Reveals Plasma Short-Chain Fatty Acids Are Associated with Metabolic Dysfunction-Associated Steatotic Liver Disease. BMC Gastroenterol. 2024; 24: 43.
Дополнительные файлы
