Роль микробиоты кишечника в патогенезе рассеянного склероза. Часть 1. Клинические и экспериментальные доказательства вовлечения микробиоты кишечника в развитие рассеянного склероза

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В обзоре обсуждается комплексная роль кишечной микробиоты в патогенезе рассеянного склероза, обобщены данные исследований изменений состава кишечного микробиома у пациентов с рассеянным склерозом и приведены доказательства вовлечения кишечной микробиоты в развитие экспериментального аутоиммунного энцефаломиелита у животных — общепринятой модели рассеянного склероза.

Об авторах

Ирина Николаевна Абдурасулова

Институт экспериментальной медицины

Автор, ответственный за переписку.
Email: i_abdurasulova@mail.ru
ORCID iD: 0000-0003-1010-6768
SPIN-код: 5019-3940
Scopus Author ID: 22233604700

канд. биол. наук, заведующая Физиологическим отделом им. И.П. Павлова

Россия, Санкт-Петербург

Список литературы

  1. Lassmann H., Brück W., Lucchinetti C. The immunopathology of multiple sclerosis: an overview // Brain Pathol. 2007. Vol. 17, No. 2. P. 210–218. doi: 10.1111/j.1750-3639.2007.00064.x
  2. Kingwell E., Marriott J.J., Jette N. et al. Incidence and prevalence of multiple sclerosis in Europe: a systematic review // BMC Neurol. 2013. Vol. 13. P. 128. doi: 10.1186/1471-2377-13-128
  3. Stys P.K., Zamponi G.W., van Minnen J., Geurts J.J. Will the real multiple sclerosis please stand up? // Nat. Rev. Neurosci. 2012. Vol. 13, No. 7. P. 507–514. doi: 10.1038/nrn3275
  4. Koch-Henriksen N., Sorensen P.S. The changing demographic pattern of multiple sclerosis epidemiology // Lancet Neurol. 2010. Vol. 9, No. 5. P. 520–532. doi: 10.1016/S1474-4422(10)70064-8
  5. Filippi M., Bar-Or A., Piehl F. et al. Multiple sclerosis // Nat. Rev. Dis. Primers. 2018. Vol. 4, No. 1. P. 43. doi: 10.1038/s41572-018-0041-4
  6. Dobson R., Giovannoni G. Multiple sclerosis — a review // Eur. J. Neurol. 2019. Vol. 26, No. 1. P. 27–40. doi: 10.1111/ene.13819
  7. Orton S.M., Herrera B.M., Yee I.M. et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study // Lancet Neurol. 2006. Vol. 5, No. 11. P. 932–936. doi: 10.1016/S1474-4422(06)70581-6
  8. Trojano M., Lucchese G., Graziano G. et al. Geographical variations in sex ratio trends over time in multiple sclerosis // PLoS One. 2012. Vol. 7, No. 10. P. e48078. doi: 10.1371/journal.pone.0048078
  9. Tomassini V., Pozzilli C. Sex hormone, brain damage and clinical course of multiple sclerosis // J. Neurol. Sci. 2009. Vol. 286, No. 1–2. P. 35–39. doi: 10.1016/j.jns.2009.04.014
  10. Noseworthy J.H., Lucchinetti C., Rodriguez M., Weinshenker B.G. Multiple sclerosis // N. Engl. J. Med. 2000. Vol. 343, No. 13. P. 938–952. doi: 10.1056/NEJM200009283431307
  11. Compston A., Coles A. Multiple sclerosis // Lancet. 2008. Vol. 372, No. 9648. P. 1502–1517. doi: 10.1016/S0140-6736(08)61620-7
  12. Rovaris M., Confavreux C., Furlan R. et al. Secondary progressive multiple sclerosis: current knowledge and future challenges // Lancet Neurol. 2006. Vol. 5, No. 4. P. 343–354. doi: 10.1016/S1474-4422(06)70410-0
  13. Peterson J.W., Trapp B.D. Neuropathobiology of multiple sclerosis // Neurol. Clin. 2005. Vol. 23, No. 1. P. 107–129, vi-vii. doi: 10.1016/j.ncl.2004.09.008
  14. Levinthal D.J., Rahman F., Nusrat S. et al. Adding to the burden: gastrointestinal symptoms and syndromes in multiple sclerosis // Mult. Scler. Int. 2013. Vol. 2013. P. 319201. doi: 10.1155/2013/319201
  15. Ghasemi N., Razavi S., Nikzad E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy // Cell J. 2017. Vol. 19, No. 1. P. 1–10. doi: 10.22074/cellj.2016.4867
  16. Trapp B.D., Peterson J., Ransohoff R.M. et al. Axonal transection in the lesions of multiple sclerosis // N. Engl. J. Med. 1998. Vol. 338, No. 5. P. 278–285. doi: 10.1056/NEJM199801293380502
  17. Lucchinetti C., Brück W., Parisi J. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination // Ann. Neurol. 2000. Vol. 47, No. 6. P. 707–717. doi: 10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q
  18. Sospedra M., Martin R. Immunology of multiple sclerosis // Annu. Rev. Immunol. 2005. Vol. 23. P. 683–747. doi: 10.1146/annurev.immunol.23.021704.115707
  19. Frohman E.M., Racke M.K., Raine C.S. Multiple sclerosis — the plaque and its pathogenesis // N. Engl. J. Med. 2006. Vol. 354, No. 9. P. 942–955. doi: 10.1056/NEJMra052130
  20. Frischer J.M., Bramow S., Dal-Bianco A. et al. The relation between inflammation and neurodegeneration in multiple sclerosis brain // Brain. 2009. Vol. 132, No. Pt 5. P. 1175–1189. doi: 10.1093/brain/awp070
  21. Weygandt M., Hackmack K., Pfüller C. et al. MRI pattern recognition in multiple sclerosis normal-appearing brain areas // PLoS One. 2011. Vol. 6, No. 6. P. e21138. doi: 10.1371/journal.pone.0021138
  22. Venken K., Hellings N., Broekmans T. et al. Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression // J. Immunol. 2008. Vol. 180, No. 9. P. 6411–6420. doi: 10.4049/jimmunol.180.9.6411
  23. Nylander A., Hafler D.A. Multiple sclerosis // J. Clin. Invest. 2012. Vol. 122, No. 4. P. 1180–1188. doi: 10.1172/JCI58649
  24. El Behi M., Dubucquoi S., Lefranc D. et al. New insights into cell responses involved in experimental autoimmune encephalomyelitis and multiple sclerosis // Immunol. Lett. 2005. Vol. 96, No. 1. P. 11–26. doi: 10.1016/j.imlet.2004.07.017
  25. Абдурасулова И.Н., Клименко В.М. Роль иммунных и глиальных клеток в процессах нейродегенерации // Медицинский академический журнал. 2011. Т. 11, № 1. С. 12–29. doi: 10.17816/MAJ11112-29
  26. Абдурасулова И.Н., Клименко В.М. Гетерогенность механизмов повреждения нервных клеток при демиелинизирующих аутоиммунных заболеваниях ЦНС // Российский физиологический журнал им. И.М. Сеченова. 2010. Т. 96, № 1. С. 50–68.
  27. Miller E., Wachowicz B., Majsterek I. Advances in antioxidative therapy of multiple sclerosis // Curr. Med. Chem. 2013. Vol. 20, No. 37. P. 4720–4730. doi: 10.2174/09298673113209990156
  28. Trapp B.D., Nave K.A. Multiple sclerosis: an immune or neurodegenerative disorder? // Annu. Rev. Neurosci. 2008. Vol. 31. P. 247–269. doi: 10.1146/annurev.neuro.30.051606.094313
  29. Weng M., Walker W.A. The role of gut microbiota in programming the immune phenotype // J. Dev. Orig. Health Dis. 2013. Vol. 4, No. 3. P. 203–214. doi: 10.1017/S2040174412000712
  30. Wekerle H. Nature plus Nurture: the triggering of multiple sclerosis // Swiss. Med. Wkly. 2015. Vol. 145. P. w14189. doi: 10.4414/smw.2015.14189
  31. Eftekharian M.M., Sayad A., Omrani M.D. et al. Single nucleotide polymorphism in the FOXP3 gene are associated with increased risk of relapsing-remitting multiple sclerosis // Hum. Antibodies. 2016. Vol. 24, No. 3–4. P. 85–90. doi: 10.3233/HAB-160299
  32. Wawrusiewicz-Kurylonek N., Chorąży M., Posmyk R. et al. The FOXP3 rs3761547 gene polymorphism in multiple sclerosis as a male-specific risk factor // Neuromolecular Med. 2018. Vol. 20, No. 4. P. 537–543. doi: 10.1007/s12017-018-8512-z
  33. Bush W.S., Sawcer S.J., de Jager P.L. et al. Evidence for polygenic susceptibility to multiple sclerosis — the shape of things to come // Am. J. Hum. Genet. 2010. Vol. 86, No. 4. P. 621–625. doi: 10.1016/j.ajhg.2010.02.027
  34. International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2; Sawcer S., Hellenthal G., Pirinen M. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis // Nature. 2011. Vol. 476, No. 7359. P. 214–219. doi: 10.1038/nature10251
  35. Beecham A.H., Patsopoulos N.A., Xifara D.K. et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis // Nat. Genet. 2013. Vol. 45, No. 11. P. 1353–1360. doi: 10.1038/ng.2770
  36. Lill C.M., Luessi F., Alcina A. et al. Genome-wide significant association with seven novel multiple sclerosis risk loci // J. Med. Genet. 2015. Vol. 52, No. 12. P. 848–855. doi: 10.1136/jmedgenet-2015-103442
  37. Wang J.H., Pappas D., de Jager P.L. et al. Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data // Genome Med. 2011. Vol. 3, No. 1. P. 3. doi: 10.1186/gm217
  38. Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20 // Nat. Genet. 2009. Vol. 41, No. 7. P. 824–828. doi: 10.1038/ng.396
  39. International Multiple Sclerosis Genetics Consortium: Patsopoulos N.A., Baranzini S.E., Santaniello A. et al. The multiple sclerosis genomic map: Role of peripheral immune cells and resident microglia in susceptibility // bioRxiv. 2017. doi: 10.1101/143933
  40. Lioudyno V., Abdurasulova I., Bisaga G. et al. Single nucleotide polymorphism rs948854 in human galanin gene and multiple sclerosis: a gender-specific risk factor // J. Neurosci. Res. 2017. Vol. 95, No. 1–2. P. 644–651. doi: 10.1002/jnr.23887
  41. Lioudyno V., Abdurasulova I., Tatarinov A. et al. The effect of galanin gene polymorphism RS948854 on the severity of multiple sclerosis course: a significant association with the age of onset // Mult. Scler. Relat. Disord. 2020. Vol. 37. P. 101439. doi: 10.1016/j.msard.2019.101439
  42. Lioudyno V., Abdurasulova I., Negoreeva I. et al. Common genetic variant rs2821557 in KCNA3 is linked to a severity of multiple sclerosis // J. Neurosci. Res. 2021. Vol. 99, No. 1. P. 200–208. doi: 10.1002/jnr.24596
  43. Mumford C.J., Wood N.W., Kellar-Wood H. et al. The British Isles survey of multiple sclerosis in twins // Neurology. 1994. Vol. 44, No. 1. P. 11–15. doi: 10.1212/wnl.44.1.11
  44. Willer C.J., Dyment D.A., Risch N.J. et al. Twin concordance and sibling recurrence rates in multiple sclerosis // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100, No. 22. P. 12877–12882. doi: 10.1073/pnas.1932604100
  45. Olsson T., Barcellos L.F., Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis // Nat. Rev. Neurol. 2017. Vol. 13, No. 1. P. 25–36. doi: 10.1038/nrneurol.2016.187
  46. Leibowitz U., Antonovsky A., Medalie J.M. et al. Epidemiological study of multiple sclerosis in Israel. II. Multiple sclerosis and level of sanitation // J. Neurol. Neurosurg. Psychiatry. 1966. Vol. 29, No. 1. P. 60–68. doi: 10.1136/jnnp.29.1.60
  47. Alotaibi S., Kennedy J., Tellier R. et al. Epstein-barr virus in pediatric multiple sclerosis // JAMA. 2004. Vol. 291, No. 15. P. 1875–1879. doi: 10.1001/jama.291.15.1875
  48. Munger K.L., Levin L.I., Hollis B.W. et al. Serum 25-Hydroxyvitamin D levels and risk of multiple sclerosis // JAMA. 2006. Vol. 296, No. 23. P. 2832–2838. doi: 10.1001/jama.296.23.2832
  49. Spelman T., Gray O., Trojano M. et al. Seasonal variation of relapse rate in multiple sclerosis is latitude dependen // Ann. Neurol. 2014. Vol. 76, No. 6. P. 880–890. doi: 10.1002/ana.24287
  50. Ascherio A., Munger K.L., White R. et al. Vitamin D as an early predictor of multiple sclerosis activity and progression // JAMA Neurol. 2014. Vol. 71, No. 3. P. 306–314. doi: 10.1001/jamaneurol.2013.5993
  51. Farez M.F., Fiol M.P., Gaitán M.I. et al. Sodium intake is associated with increased disease activity in multiple sclerosis // J. Neurol. Neurosurg. Psychiatry. 2015. Vol. 86, No. 1. P. 26–31. doi: 10.1136/jnnp-2014-307928
  52. Bagur M.J., Murcia M.A., Jimenez-Monreal A.M. et al. Influence of diet in multiple sclerosis: a systematic review // Adv. Nutr. 2017. Vol. 8, No. 3. P. 463–472. doi: 10.3945/an.116.014191
  53. Hedström A.K., Alfredsson L., Olsson T. Environmental factors and their interactions with risk genotypes in MS susceptibility // Curr. Opin. Neurol. 2016. Vol. 29, No. 3. P. 293–298. doi: 10.1097/WCO.0000000000000329
  54. Mohr D.C. Stress and multiple sclerosis // J. Neurol. 2007. Vol. 254 Suppl 2. P. II65–II68. doi: 10.1007/s00415-007-2015-4
  55. Artemiadis A.K., Anagnostouli M.C., Alexopoulos E.C. Stress as a risk factor for multiple sclerosis onset or relapse: a systematic review // Neuroepidemiology. 2011. Vol. 36, No. 2. P. 109–120. doi: 10.1159/000323953
  56. Hawkes C.H. Smoking is a risk factor for multiple sclerosis: a meta-analysis // Mult. Scler. 2007. Vol. 13, No. 5. P. 610–615. doi: 10.1177/1352458506073501
  57. Jafari N., Hintzen R.Q. The association between cigarette smoking and multiple sclerosis // J. Neurol. Sci. 2011. Vol. 311, No. 1–2. P. 78–85. doi: 10.1016/j.jns.2011.09.008
  58. Munger K.L. Childhood obesity is a risk factor for multiple sclerosis // Mult. Scler. 2013. Vol. 19, No. 13. P. 1800. doi: 10.1177/1352458513507357
  59. Jahanfar S., Duggan T., Tkachuk S., Tremlett H. Factors associated with onset, relapses or progression in multiple sclerosis: a systematic review // Neurotoxicology. 2017. Vol. 61. P. 189–212. doi: 10.1016/j.neuro.2016.03.020
  60. Granieri E., Casetta I., Tola M.R., Ferrante P. Multiple sclerosis: infectious hypothesis // Neurol. Sci. 2001. Vol. 22, No. 2. P. 179–185. doi: 10.1007/s100720170021
  61. Haegert D.G. The initiation of multiple sclerosis: a new infectious hypothesis // Med. Hypotheses. 2003. Vol. 60, No. 2. P. 165–170. doi: 10.1016/s0306-9877(02)00349-3
  62. Challoner P.B., Smith K.T., Parker J.D. et al. Plaque associated expression of human herpesvirus 6 in multiple sclerosis // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92, No. 16. P. 7440–7444. doi: 10.1073/pnas.92.16.7440
  63. Soldan S.S., Berti R., Salem N. et al. Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA // Nat. Med. 1997. Vol. 3, No. 12. P. 1394–1397. doi: 10.1038/nm1297-1394
  64. Ascherio A., Munch M. Epstein–Barr virus and multiple sclerosis // Epidemiology. 2000. Vol. 11, No. 2. P. 220–224. doi: 10.1097/00001648-2000030000-00023
  65. Fierz W. Multiple sclerosis: an example of pathogenic viral interaction? // Virol. J. 2017. Vol. 14, No. 1. P. 42. doi: 10.1186/s12985-017-0719-3
  66. Antony J.M., DesLauriers A.M., Bhat R.K. et al. Human endogenous retroviruses and multiple sclerosis: Innocent bystanders or disease determinants? // Biochim. Biophys. Acta. 2011. Vol. 1812, No. 2. P. 162–176. doi: 10.1016/j.bbadis.2010.07.016
  67. Bahar M., Ashtari F., Aghaei M. et al. Mycoplasma pneumonia seroposivity in Iranian patients with relapsing-remitting multipl sclerosis: a randomized case-control study // J. Pak. Med. Assoc. 2012. Vol. 62, No. 3 Suppl 2. P. S6–8.
  68. Munger K.L., Peeling R.W., Hernan M.A. Infection with Chlamydia pneumoniae and risk of multiple sclerosis // Epidemiology. 2003. Vol. 14, No. 2. P. 141–147. doi: 10.1097/01.EDE.0000050699.23957.8E
  69. Buljevac D., Flach H.Z., Hop W.C. et al. Prospective study on the relationship between infections and multiple sclerosis exacerbations // Brain. 2002. Vol. 125, No. Pt 5. P. 952–960. doi: 10.1093/brain/awf098
  70. Steelman A.J. Infection as an environmental trigger of multiple sclerosis disease exacerbation // Front. Immunol. 2015. Vol. 6. P. 520. doi: 10.3389/fimmu.2015.00520
  71. Kurtzke J.F. A reassessment of the distribution of multiple sclerosis. Part one // Acta Neurol. Scand. 1975. Vol. 51, No. 2. P. 110–136. doi: 10.1111/j.1600-0404.1975.tb01364.x
  72. Browne P., Chandraratna D., Angood C. et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity // Neurology. 2014. Vol. 83, No. 11. P. 1022–1024. doi: 10.1212/WNL.0000000000000768
  73. Osoegawa M., Kira J., Fukazawa T. et al. Temporal changes and geographical differences in multiple sclerosis phenotypes in Japanese: nationwide survey results over 30 years // Mult. Scler. 2009. Vol. 15, No. 2. P. 159–173. doi: 10.1177/1352458508098372
  74. Houzen H., Niino M., Hata D. et al. Increasing prevalence and incidence of multiple sclerosis in northern Japan // Mult. Scler. 2008. Vol. 14, No. 7. P. 887–892. doi: 10.1177/1352458508090226
  75. Jancic J., Nikolic B., Ivancevic N. et al. Multiple sclerosis in pediatrics: current concepts and treatment options // Neurol. Ther. 2016. Vol. 5, No. 2. P. 131–143. doi: 10.1007/s40120-016-0052-6
  76. Strachan D.P. Hay fever, hygiene, and household size // BMJ. 1989. Vol. 299, No. 6710. P. 1259–1260. doi: 10.1136/bmj.299.6710.1259
  77. Fleming J., Fabry Z. The hygiene hypothesis and multiple sclerosis // Ann. Neurol. 2007. Vol. 61, No. 2. P. 85–89. doi: 10.1002/ana.21092
  78. Krone B., Grange J.M. Paradigms in multiple sclerosis: time for a change, time for a unifying concept // Inflammopharmacol. 2011. Vol. 19, No. 4. P. 187–195. doi: 10.1007/s10787-011-0084-6
  79. Nielsen T.R., Rostgaard K., Nielsen N.M. et al. Multiple sclerosis after infectious mononucleosis // Arch. Neurol. 2007. Vol. 64, No. 1. P. 72–75. doi: 10.1001/archneur.64.1.72
  80. Esposito S., Bonavita S., Sparaco M. et al. The role of diet in multiple sclerosis: a review // Nutr. Neurosci. 2018. Vol. 21, No. 6. P. 377–390. doi: 10.1080/1028415X.2017.1303016
  81. Kira J., Yamasaki K., Horiuchi I. et al. Changes in the clinical phenotypes of multiple sclerosis during the past 50 years in Japan // J. Neurol. Sci. 1999. Vol. 166, No. 1. P. 53–57. doi: 10.1016/s0022-510x(99)00115-x
  82. Gimeno D., Kivimäki M., Brunner E.J. et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study // Psychol. Med. 2009. Vol. 39, No. 3. P. 413–423. doi: 10.1017/S0033291708003723
  83. Berer K., Krishnamoorthy G. Commensal gut flora and brain autoimmunity: a love or hate affair? // Acta Neuropathol. 2012. Vol. 123, No. 5. P. 639–651. doi: 10.1007/s00401-012-0949-9
  84. Brown J., Quattrochi B., Everett C. et al. Gut commensals, dysbiosis, and immune response imbalance in the pathogenesis of multiple sclerosis // Mult. Scler. 2021. Vol. 27, No. 6. P. 807–811. doi: 10.1177/1352458520928301
  85. Barcellos L.F., Oksenberg J.R., Green A.J. et al. Genetic basic for clinical expression in multiple sclerosis // Brain. 2002. Vol. 125, No. Pt 1. P. 150–158. doi: 10.1093/brain/awf009
  86. Imani D., Azimi A., Salehi Z. et al. Association of nod-like receptor protein-3 single nucleotide gene polymorphisms and expression with the susceptibility to relapsing–remitting multiple sclerosis // Int. J. Immunogenet. 2018. Vol. 45, No. 6. P. 329–336. doi: 10.1111/iji.12401
  87. Racke M.K., Drew P.D. Toll-like receptors in multiple sclerosis // Curr. Top. Microbiol. Immunol. 2009. Vol. 336. P. 155–168. doi: 10.1007/978-3-642-00549-7_9
  88. Gharagozloo M., Gris K.V., Mahvelati T. et al. NLR-dependent regulation of inflammation in multiple sclerosis // Front. Immunol. 2018. Vol. 8. P. 2012. doi: 10.3389/fimmu.2017.02012
  89. Maghzi A.-H., Etemadifar M., Heshmat-Ghahdarijani K. et al. Cesarean delivery may increase the risk of multiple sclerosis // Mult. Scler. 2012. Vol. 18, No. 4. P. 468–471. doi: 10.1177/1352458511424904
  90. Nielsen N.M., Bager P., Stenager E. et al. Cesarean section and offspring’s risk of multiple sclerosis: a Danish nationwide cohort study // Mult. Scler. 2013. Vol. 19, No. 11. P. 1473–1477. doi: 10.1177/1352458513480010
  91. Conradi S., Malzahn U., Paul F. et al. Breastfeeding is associated with lower risk for multiple sclerosis // Mult. Scler. 2013. Vol. 19, No. 5. P. 553–558. doi: 10.1177/1352458512459683
  92. Ragnedda G., Leoni S., Parpinel M. et al. Reduced duration of breastfeeding is associated with a higher risk of multiple sclerosis in both Italian and Norwegian adult males: the EnvIMS study // J. Neurol. 2015. Vol. 262, No. 5. P. 1271–1277. doi: 10.1007/s00415-015-7704
  93. Kleinewietfeld M., Manzel A., Titze J. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells // Nature. 2013. Vol. 496, No. 7446. P. 518–522. doi: 10.1038/nature11868
  94. Sedaghat F., Jessri M., Behrooz M. et al. Mediterranean diet adherence and risk of multiple sclerosis: a case-control study // Asia Pac. J. Clin. Nutr. 2016. Vol. 25, No. 2. P. 377–384. doi: 10.6133/apjcn.2016.25.2.12
  95. Andeweg S.P., Keşmir C., Dutilh B.E. Quantifying the impact of human leukocyte antigen on the human gut microbiota // mSphere. 2021. Vol. 6, No. 4. P. e00476–21. doi: 10.1128/mSphere.00476-21
  96. Carvalho F.A., Koren O., Goodrich J.K. et al. Transient inability to manage Proteobacteria promotes chronic gut inflammation in TLR5-deficient mice // Cell Host Microbe. 2012. Vol. 12, No. 2. P. 139–152. doi: 10.1016/j.chom.2012.07.004
  97. Knights D., Silverberg M.S., Weersma R.K. et al. Complex host genetics influence the microbiome in inflammatory bowel disease // Genome Med. 2014. Vol. 6, No. 12. P. 107. doi: 10.1186/s13073-014-0107-1
  98. Wang J., Thingholm L.B., Skiecevičienė J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota // Nat. Genet. 2016. Vol. 48, No. 11. P. 1396–1406. doi: 10.1038/ng.3695
  99. Bäckhed F., Roswall J., Peng Y. et al. Dynamics and stabilization of the human gut microbiome during the first year of life // Cell Host Microbe. 2015. Vol. 17, No. 5. P. 690–703. doi: 10.1016/j.chom.2015.04.004
  100. Ma J., Li Z., Zhang W. et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants // Sci. Rep. 2020. Vol. 10, No. 1. P. 15792. doi: 10.1038/s41598-020-72635-x
  101. Mueller S., Saunier K., Hanisch C. et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study // Appl. Environ. Microbiol. 2006. Vol. 72, No. 2. P. 1027–1033. doi: 10.1128/AEM.72.2.1027-1033.2006
  102. Singh P., Manning S.D. Impact of age and sex on the composition and abundance of the intestinal microbiota in individuals with and without enteric infections // Ann. Epidemiol. 2016. Vol. 26, No. 5. P. 380–385. doi: 10.1016/j.annepidem.2016.03.007
  103. Sinha T., Vich Vila A., Garmaeva S. et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles // Gut Microbes. 2019. Vol. 10, No. 3. P. 358–366. doi: 10.1080/19490976.2018.1528822
  104. Koliada A., Moseiko V., Romanenko M. et al. Sex differences in the phylum-level human gut microbiota composition // BMC Microbiol. 2021. Vol. 21, No. 1. P. 131. doi: 10.1186/s12866-021-02198-y
  105. Carvalho-Queiroz С., Johansson M.A., Persson J.-O. et al. Associations between EBV and CMV seropositivity, early exposures, and gut microbiota in a prospective birth cohort: A 10-Year follow-up // Front. Pediatr. 2016. Vol. 4. P. 93. doi: 10.3389/fped.2016.00093
  106. Hollins S.L., Hodgson D.M. Stress, microbiota, and immunity // Curr. Opin. Behav. Sci. 2019. Vol. 28. P. 66–71. doi: 10.1016/j.cobeha.2019.01.015
  107. De Filippo C., Cavalieri D., Di Paola M. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 33. P. 14691–14696. doi: 10.1073/pnas.1005963107
  108. Merra G., Noce A., Marrone G. et al. Influence of mediterranean diet on human gut microbiota // Nutrients. 2021. Vol. 13, No. 1. P. 7. doi: 10.3390/nu13010007
  109. Lee S.H., Yun Y., Kim S.J. et al. Association between cigarette smoking status and composition of gut microbiota: Population-based cross-sectional study // J. Clin. Med. 2018. Vol. 7, No. 9. P. 282. doi: 10.3390/jcm7090282
  110. Bervoets L., Van Hoorenbeeck K., Kortleven I. et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study // Gut Pathog. 2013. Vol. 5, No. 1. P. 10. doi: 10.1186/1757-4749-5-10
  111. Riva A., Borgo F., Lassandro C. et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations // Environ. Microbiol. 2017. Vol. 19, No. 1. P. 95–105. doi: 10.1111/1462-2920.13463
  112. Bora S.A., Kennett M.J., Smith P.B. et al. The gut microbiota regulates endocrine vitamin D methabolism through fibroblast growth factor 23 // Front. Immunol. 2018. Vol. 9. P. 408. doi: 10.3389/fimmu.2018.00408
  113. Tabatabaeizadeh S.A., Tafazoli N., Ferns G.A. et al. Vitamin D, the gut microbiome and inflammatory bowel disease // J. Res. Med. Sci. 2018. Vol. 23. P. 75. doi: 10.4103/jrms.JRMS_606_17
  114. Turnbaugh P.J., Ley R.E., Hamady M. et al. The human microbiome project // Nature. 2007. Vol. 449, No. 7164. P. 804–810. doi: 10.1038/nature06244
  115. Mai V., Draganov P.V. Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health // World J. Gastroenterol. 2009. Vol. 15, No. 1. P. 81–85. doi: 10.3748/wjg.15.81
  116. Lankelma J.M., Nieuwdorp M., de Vos W.M., Wiersinga W.J. The gut microbiota in internal medicine: implications for health and disease // Neth. J. Med. 2015. Vol. 73, No. 2. P. 61–68.
  117. Lozupone C.A., Stombaugh J.I., Gordon J.I. et al. Diversity, stability and resilience of the human gut microbiota // Nature. 2012. Vol. 489, No. 7415. P. 220–230. doi: 10.1038/nature11550
  118. McDermott A.J., Huffnagle G.B. The microbiome and regulation of mucosal immunity // Immunology. 2014. Vol. 142, No. 1. P. 24–31. doi: 10.1111/imm.12231
  119. Bäckhed F., Ley R.E., Sonnenburg J.L. et al. Host-bacterial mutualism in the human intestine // Science. 2005. Vol. 307, No. 5717. P. 1915–1920. doi: 10.1126/science.1104816
  120. Eckburg P.B., Bik E.M., Bernstein C.N. et al. Diversity of the human intestinal microbial flora // Science. 2005. Vol. 308, No. 5728. P. 1635–1638. doi: 10.1126/science.1110591
  121. Donaldson G.P., Lee S.M., Mazmanian S.K. Gut biogeography of the bacterial microbiota // Nat. Rev. Microbiol. 2016. Vol. 14, No. 1. P. 20–32. doi: 10.1038/nrmicro3552
  122. Schippa S., Conte M.P. Dysbiotic events in gut microbiota: impact on human health // Nutrients. 2014. Vol. 6, No. 12. P. 5786–5805. doi: 10.3390/nu6125786
  123. Ley R.E., Peterson D.A., Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine // Cell. 2006. Vol. 124, No. 4. P. 837–848. doi: 10.1016/j.cell.2006.02.017
  124. Bianconi E., Piovesan A., Facchin F. et al. An estimation of the number of cells in the human body // Ann. Hum. Biol. 2013. Vol. 40, No. 6. P. 463–471. doi: 10.3109/03014460.2013.807878
  125. Khanna S., Tosh P.K. A clinician’s primer on the microbiome in human health and disease // Mayo Clin. Proc. 2014. Vol. 89, No. 1. P. 107–114. doi: 10.1016/j.mayocp.2013.10.011
  126. Brestoff J.R., Artis D. Commensal bacteria at the interface of host metabolism and the immune system // Nat. Immunol. 2013. Vol. 14, No. 7. P. 676–684. doi: 10.1038/ni.2640
  127. Gill S.R., Pop M., Deboy R.T. et al. Metagenomic analysis of the human distal gut microbiome // Science. 2006. Vol. 312, No. 5778. P. 1355–1359. doi: 10.1126/science.1124234
  128. Hollister E.B., Gao C., Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health // Gastroenterology. 2014. Vol. 146, No. 6. P. 1449–1458. doi: 10.1053/j.gastro.2014.01.052
  129. Hood L. Tackling the microbiome // Science. 2012. Vol. 336, No. 6086. P. 1209. doi: 10.1126/science.1225475
  130. Strober W. Inside the microbial and immune labyrinth: gut microbes: friends or fiends? // Nat. Med. 2010. Vol. 16, No. 11. P. 1195–1197. doi: 10.1038/nm1110-1195
  131. Cerf-Bensussan N., Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes? // Nat. Rev. Immunol. 2010. Vol. 10, No. 10. P. 735–744. doi: 10.1038/nri2850
  132. Benson A.K., Kelly S.A., Legge R. et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 44. P. 18933–18938. doi: 10.1073/pnas.1007028107
  133. Xu J., Mahowald M., Ley R. et al. Evolution of symbiotic bacteria in the distal human intestine // PLoS Biol. 2007. Vol. 5, No. 7. P. e156. doi: 10.1371/journal.pbio.0050156
  134. Quigley E.M.M. Gut bacteria in health and disease // Gastroenterol. Hepatol. (NY). 2013. Vol. 9, No. 9. P. 560–569.
  135. Macfarlane S., Macfarlane G.T. Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut // Appl. Environ. Microbiol. 2006. Vol. 72, No. 9. P. 6204–6211. doi: 10.1128/AEM.00754-06
  136. Van der Waaij L.A., Harmsen H.J., Madjipour M. et al. Bacterial population analysis of human colon and terminal ileum biopsies with 16S rRNA-based fluorescent probes: commensal bacteria live in suspension and have no direct contact with epithelial cells // Inflamm. Bowel Dis. 2005. Vol. 11, No. 10. P. 865–871. doi: 10.1097/01.mib.0000179212.80778.d3
  137. Swidsinski A., Loening-Baucke V., Theissig F. et al. Comparative study of the intestinal mucus barrier in normal and inflamed colon // Gut. 2007. Vol. 56, No. 3. P. 343–350. doi: 10.1136/gut.2006.098160
  138. Carroll I.M., Ringel-Kulka T., Keku T.O. et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome // Am. J. Physiol. Gastrointest. Liver Physiol. 2011. Vol. 301, No. 5. P. G799–807. doi: 10.1152/ajpgi.00154.2011
  139. Atuma C., Strugala V., Allen A., Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo // Am. J. Physiol. Gastrointest. Liver Physiol. 2001. Vol. 280, No. 5. P. G922–G929. doi: 10.1152/ajpgi.2001.280.5.G922
  140. Johansson M.E., Phillipson M., Petersson J. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria // Proc. Natl. Acad. Sci. USA. 2008. Vol. 105, No. 39. P. 15064–15069. doi: 10.1073/pnas.0803124105
  141. Gordon H.A., Pesti L. The gnotobiotic animal as a tool in the study of host microbial relationship // Bacteriol. Rev. 1971. Vol. 35, No. 4. P. 390–429. doi: 10.1128/br.35.4.390-429.1971
  142. Falk P.G., Hooper L.V., Midtverd T., Gordon J.I. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology // Microbiol. Mol. Biol. Rev. 1998. Vol. 62, No. 4. P. 1157–1170. doi: 10.1128/MMBR.62.4.1157-1170.1998
  143. Sjögren Y.M., Tomicic S., Lundberg A. et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses // Clin. Exp. Allergy. 2009. Vol. 9, No. 12. P. 1842–1851. doi: 10.1111/j.1365-2222.2009.03326.x
  144. Martin R., Nauta A.J., Ben Amor K. et al. Early life: Gut microbiota and immune development in infancy // Benef. Microbes. 2010. Vol. 1, No. 4. P. 367–382. doi: 10.3920/BM2010.0027
  145. Hsiao E.Y., McBride S.W., Hsien S. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders // Cell. 2013. Vol. 155, No. 7. P. 1451–1463. doi: 10.1016/j.cell.2013.11.024
  146. Mazmanian S.K., Liu C.H., Tzianabos A.O., Kasper D.L. An immunoregulatory molecule of symbiotic bacteria directs maturation of the host immune system // Cell. 2005. Vol. 122, No. 1. P. 107–118. doi: 10.1016/j.cell.2005.05.007
  147. Sampson T.R., Mazmanian S.K. Control of brain development, function, and behavior by the microbiome // Cell Host Microbe. 2015. Vol. 17, No. 5. P. 565–576. doi: 10.1016/j.chom.2015.04.011
  148. Braniste V., Al-Asmakh M., Kowal C. et al. The gut microbiota influences blood brain barrier permeability in mice // Sci. Transl. Med. 2014. Vol. 6, No. 263. P. 263ra158. doi: 10.1126/scitranslmed.3009759
  149. Hoban A.E., Stilling R.M., Ryan F.J. et al. Regulation of prefrontal cortex myelination by the microbiota // Transl. Psychiatry. 2016. Vol. 6, No. 4. P. e774. doi: 10.1038/tp.2016.42
  150. Sassone-Corsi M., Raffatellu M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens // J. Immunol. 2015. Vol. 194, No. 9. P. 4081–4087. doi: 10.4049/jimmunol.1403169
  151. Hansen N.W., Sams A. The Microbiotic highway to health — new perspective on food structure, gut microbiota, and host inflammation // Nutrients. 2018. Vol. 10, No. 11. P. 1590. doi: 10.3390/nu10111590
  152. Guarner F., Malagelada J.R. Gut flora in health and disease // Lancet. 2003. Vol. 361, No. 9356. P. 512–519. doi: 10.1016/S0140-6736(03)12489-0
  153. Sekirov I., Russell S.L., Antunes L.C.M., Finlay B.B. Gut microbiota in health and disease // Physiol. Rev. 2010. Vol. 90, No. 3. P. 859–904. doi: 10.1152/physrev.00045.2009
  154. Sommer F., Bäckhed F. The gut microbiota — Masters of host development and physiology // Nat. Rev. Microbiol. 2013. Vol. 11, No. 4. P. 227–238. doi: 10.1038/nrmicro2974
  155. Rojo D., Méndez-García C., Raczkowska B.A. et al. Exploring the human microbiome from multiple perspectives: factors altering its composition and function // FEMS Microbiol. Rev. 2017. Vol. 41, No. 4. P. 453–478. doi: 10.1093/femsre/fuw046
  156. Cantarel B.L., Waubant E., Chehoud C. et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators // J. Investig. Med. 2015. Vol. 63, No. 5. P. 729–734. doi: 10.1097/JIM.0000000000000192
  157. Miyake S., Kim S., Suda W. et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belondind to Clostridia XIVa and IV clusters // PLoS One. 2015. Vol. 10, No. 9. P. e0137429. doi: 10.1371/journal.pone.0137429
  158. Chen J., Chia N., Kalari K.R. et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls // Sci. Rep. 2016. Vol. 6. P. 28484. doi: 10.1038/srep28484
  159. Jangi S., Gandhi R., Cox L.M. et al. Alterations of the human gut microbiome in multiple sclerosis // Nat. Commun. 2016. Vol. 7. P. 12015. doi: 10.1038/ncomms12015
  160. Tremlett H., Fadrosh D.W., Faruqi A.A. et al. Associations between the gut microbiota and host immune markers in pediatric multiple sclerosis and controls // BMC Neurol. 2016. Vol. 16, No. 1. P. 182. doi: 10.1186/s12883-016-0703-3
  161. Berer K., Gerdes L.A., Cekanaviciute E. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice // Proc. Natl. Acad. Sci. USA. 2017. Vol. 114, No. 40. P. 10719–10724. doi: 10.1073/pnas.1711233114
  162. Cekanaviciute E., Yoo B.B., Runia T.F. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models // Proc. Natl. Acad. Sci. USA. 2017. Vol. 114, No. 40. P. 10713–10718. doi: 10.1073/pnas.1711235114
  163. Cosorich I., Dalla-Costa G., Sorini C. et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis // Sci. Adv. 2017. Vol. 3, No. 7. P. e1700492. doi: 10.1126/sciadv.1700492
  164. Cekanaviciute E., Pröbstel A.-K., Thomann A. et al. Multiple sclerosis-associated changes in the composition and immune functions of spore-forming bacteria // mSystems. 2018. Vol. 3, No. 6. P. e00083–18. doi: 10.1128/mSystems.00083-18
  165. Forbes J.D., Chen C.-Y., Knox N.C. et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseases — does a common dysbiosis exist? // Microbiome. 2018. Vol. 6, No. 1. P. 221. doi: 10.1186/s40168-018-0603-4
  166. Abdurasulova I.N., Matsulevich A.V., Tarasova E.A. et al. Changes of intestinal microbiome in multiple sclerosis are associated with immune shift and psychoemotional disorders // Medical Academic Journal. 2019. Vol. 19, No. 1S. P. 51–54. doi: 10.17816/MAJ191S151-54
  167. Kozhieva M., Naumova N., Alikina T. et al. Primary progressive multiple sclerosis in a Russian cohort: relationship with gut bacterial diversity // BMC Microbiol. 2019. Vol. 19, No. 1. P. 309. doi: 10.1186/s12866-019-1685-2
  168. Oezguen N., Yalcinkaya N., Kücükali C.I. et al. Microbiota stratification identifies disease-specific alterations in neuro-Behçet’s disease and multiple sclerosis // Clin. Exp. Rheumatol. 2019. Vol. 37 Suppl 121, No. 6. P. 58–66.
  169. Sand I.K., Zhu Y., Ntranos A. et al. Disease-modifying therapies alter gut microbial composition in MS // Neurol. Neuroimmunol. Neuroinflamm. 2019. Vol. 6, No. 1. P. e517. doi: 10.1212/NXI.0000000000000517
  170. Storm-Larsen C., Myhr K.-M., Farbu E. et al. Gut microbiota composition during a 12-week intervention with delayed-release dimethyl fumarate in multiple sclerosis — a pilot trial // Mult. Scler. J. Exp. Transl. Clin. 2019. Vol. 5, No. 4. P. 2055217319888767. doi: 10.1177/2055217319888767
  171. Ventura R.E., Iizumi1 T., Battaglia T. et al. Gut microbiome of treatment-naïve MS patients of different ethnicities early in disease course // Sci. Rep. 2019. Vol. 9, No. 1. P. 16396. doi: 10.1038/s41598-019-52894-z
  172. Zeng Q., Gong J., Liu X. et al. Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis // Neurochem. Int. 2019. Vol. 129. P. 104468. doi: 10.1016/j.neuint.2019.104468
  173. Castillo-Álvarez F., Pérez-Matute P., Oteo J.A., Marzo-Sola M.E. The influence of interferon β-1b on gut microbiota composition in patients with multiple sclerosis // Neurologia (Engl Ed). 2021. Vol. 36, No. 7. P. 495–503. doi: 10.1016/j.nrleng.2020.05.006
  174. Kishikawa T., Ogawa K., Motooka D. et al. A Metagenome-wide association study of gut microbiome in patients with multiple sclerosis revealed novel disease pathology // Front. Cell. Infect. Microbiol. 2020. Vol. 10. P. 585973. doi: 10.3389/fcimb.2020.585973
  175. Ling Z., Cheng Y., Yan X. et al. Alterations of the fecal microbiota in Chinese patients with multiple sclerosis // Front. Immunol. 2020. Vol. 11. P. 590783. doi: 10.3389/fimmu.2020.590783
  176. Reynders T., Devolder L., Valles-Colomer M. et al. Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes // Ann. Clin. Transl. Neurol. 2020. Vol. 7, No. 4. P. 406–419. doi: 10.1002/acn3.51004
  177. Takewaki D., Suda W., Sato W. et al. Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis // PNAS. 2020. Vol. 117, No. 36. P. 22402–22412. doi: 10.1073/pnas.2011703117
  178. Ní Choileáin S., Kleinewietfeld M., Raddassi K. et al. CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiota // J. Translat. Autoimmun. 2020. Vol. 3. P. 100032. doi: 10.1016/j.jtauto.2019.100032
  179. Cox L.M., Maghzi A.H., Liu S. et al. The gut microbiome in progressive multiple sclerosis // Ann. Neurol. 2021. Vol. 89, No. 6. P. 1195–1211. doi: 10.1002/ana.26084
  180. Galluzzo P., Capri F.C., Vecchioni L. et al. Comparison of the intestinal microbiome of Italian patients with multiple sclerosis and their household relatives // Life (Basel). 2021. Vol. 11, No. 7. P. 620. doi: 10.3390/life11070620
  181. Pellizoni F.P., Leite A.Z., de Campos Rodrigues N. et al. Detection of dysbiosis and increased intestinal permeability in Brazilian patients with relapsing-remitting multiple sclerosis // Int. J. Environ. Res. Public Health. 2021. Vol. 18, No. 9. P. 4621. doi: 10.3390/ijerph18094621
  182. Tremlett H., Zhu F., Arnold D. et al. The gut microbiota in pediatric multiple sclerosis and demyelinating syndromes // Ann. Clin. Transl. Neurol. 2021. Vol. 8, No. 12. P. 2252–2269. doi: 10.1002/acn3.51476
  183. Yadav M., Ali S., Shrode R.L. et al. Multiple sclerosis patients have an altered gut mycobiome and increased fungal to bacterial richness // bioRxiv. 2022. Vol. 17, No. 4. P. e0264556. doi: 10.1101/2021.08.30.458212
  184. Vallino A., Dos Santos A., Mathe C.V. et al. Gut bacteria Akkermansia elicit a specific IgG response in CSF of patients with MS // Neurol. Neuroimmunol. Neuroinflamm. 2020. Vol. 7, No. 3. P. e688. doi: 10.1212/NXI.0000000000000688
  185. Hirano A., Umeno J., Okamoto Y. et al. Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis // J. Gastroenterol. Hepatol. 2018. Vol. 33, No. 9. P. 1590–1597. doi: 10.1111/jgh.14129
  186. Rumah K.R., Linden J., Fischetti V.A., Vartanian T. Isolation of clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease // PLoS One. 2013. Vol. 8, No. 10. P. e76359. doi: 10.1371/journal.pone.0076359
  187. Абдурасулова И.Н., Тарасова Е.А., Ермоленко Е.И. и др. При рассеянном склерозе изменяется качественный и количественный состав микробиоты кишечника // Медицинский академический журнал. 2015. Т. 15, № 3. С. 55–67.
  188. Mete A., Garcia J., Ortega J. et al. Brain lesions associated with clostridium perfringens type D epsilon toxin in a Holstein heifer calf // Vet. Pathol. 2013. Vol. 50, No. 5. P. 765–768. doi: 10.1177/0300985813476058
  189. Dorca-Arévalo J., Soler-Jover A., Gibert M. et al. Binding of epsilon-toxin from Clostridium perfringens in the nervous system // Vet. Microbiol. 2008. Vol. 131, No. 1–2. P. 14–25. doi: 10.1371/journal.pone.0102417
  190. Lonchamp E., Dupont J.-L., Wioland L. et al. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release // PLoS One. 2010. Vol. 5, No. 9. P. e13046. doi: 10.1371/journal.pone.0013046
  191. Finnie J.W., Blumbergs P.C., Manavis J. Neuronal damage produced in rat brains by Clostridium perfringens type D epsilon toxin // J. Comp. Pathol. 1999. Vol. 120, No. 4. P. 415–420. doi: 10.1053/jcpa.1998.0289
  192. Yatsunenko T., Rey F.E., Manary M.J. et al. Human gut microbiome viewed across age and geography // Nature. 2012. Vol. 486, No. 7402. P. 222–227. doi: 10.1038/nature11053
  193. Абдурасулова И.Н., Тарасова Е.А., Никифорова И.Г. и др. Особенности состава микробиоты кишечника у пациентов с рассеянным склерозом, получающих препараты, изменяющие течение рассеянного склероза // Журнал неврологии и психиатрии им. С.С. Корсакова. 2018. Т. 118, № 8–2. С. 62–69. doi: 10.17116/jnevro201811808262
  194. Tarasova E.A., Lioudyno V.I., Matsulevich A.V. et al. Features of the intestinal microbiota composition in multiple sclerosis patients receiving oral disease-modifying therapy // Medical Academic Journal. 2021. Vol. 21, No. 4. P. 47–56. doi: 10.17816/MAJ88595
  195. Buscarinu M.C., Fornasiero A., Romano S. et al. The contribution of gut barrier changes to multiple sclerosis pathophysiology // Front. Immunol. 2019. Vol. 10. P. 1916. doi: 10.3389/fimmu.2019.01916
  196. Hermann-Bank M.L., Skovgaard K., Stockmarr A. et al. The Gut Microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity // BMC Genomics. 2013. Vol. 14. P. 788. doi: 10.1186/1471-2164-14-788
  197. Bang S., Yoo D.A., Kim S.-J. et al. Establishment and evaluation of prediction model for multiple disease classification based on gut microbial data // Sci. Rep. 2019. Vol. 9, No. 1. P. 10189. doi: 10.1038/s41598-019-46249-x
  198. Gold R., Linington C., Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research // Brain. 2006. Vol. 129, No. Pt 8. P. 1953–1971. doi: 10.1093/brain/awl075
  199. Ben-Nun A., Kaushansky N., Kawakami N. et al. From classic to spontaneous and humanized models of multiple sclerosis: Impact on understanding pathogenesis and drug development // J. Autoimmun. 2014. Vol. 54. P. 33–50. doi: 10.1016/j.jaut.2014.06.004
  200. Krishnamoorthy G., Lassmann H., Wekerle H., Holz A. Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation // J. Clin. Invest. 2006. Vol. 116, No. 9. P. 2385–2392. doi: 10.1172/JCI28330
  201. Ochoa-Reparaz J., Mielcarz D.W., Ditrio L.E. et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis // J. Immunol. 2009. Vol. 183, No. 10. P. 6041–6050. doi: 10.4049/jimmunol.0900747
  202. Goverman J., Woods A., Larson L. et al. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity // Cell. 1993. Vol. 72, No. 4. P. 551–560. doi: 10.1016/0092-8674(93)90074-z
  203. Berer K., Mues M., Koutrolos M. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination // Nature. 2011. Vol. 479, No. 7374. P. 538–541. doi: 10.1038/nature10554
  204. Ivanov I.I., Frutos Rde L., Manel N. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine // Cell. Host. Microbe. 2008. Vol. 4, No. 4. P. 337–349. doi: 10.1016/j.chom.2008.09.009
  205. Ivanov I.I., Atarashi K., Manel N. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria // Cell. 2009. Vol. 139, No. 3. P. 485–498. doi: 10.1016/j.cell.2009.09.033
  206. Lee Y.K., Menezes J.S., Umesaki Y., Mazmanian S.K. Proinflammatory T-cell responces to gut microbiota promote experimental autoimmune encephalomyelitis // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108 Suppl 1, No. Suppl 1. P. 4615–4622. doi: 10.1073/pnas.1000082107
  207. Sakaguchi S., Yamaguchi T., Nomura T., Ono M. Regulatory T cells and immune tolerance // Cell. 2008. Vol. 133, No. 5. P. 775–787. doi: 10.1016/j.cell.2008.05.009
  208. Round J.L., Mazmanian S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 27. P. 12204–12209. doi: 10.1073/pnas.0909122107
  209. Round J.L., Mazmanian S.K. The gut microbiota shapes intestinal immune responses during health and disease // Nat. Rev. Immunol. 2009. Vol. 9, No. 5. P. 313–323. doi: 10.1038/nri2515
  210. Clemente J.C., Ursell L.K., Parfrey L.W., Knight R. The impact of the gut microbiota on human health: an integrative view // Cell. 2012. Vol. 148, No. 6. P. 1258–1270. doi: 10.1016/j.cell.2012.01.035
  211. Silva Y.P., Bernardi A., Frozza R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication // Front. Endocrinol. (Lausanne). 2020. Vol. 11. P. 25. doi: 10.3389/fendo.2020.00025
  212. Gandy K., Zhang J., Nagarkatti P., Nagarkatti M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models // Sci. Rep. 2019. Vol. 9, No. 1. P. 6923. doi: 10.1038/s41598-019-43356-7
  213. Бойко А.Н., Фаворова О.О., Кулакова О.Г., Гусев Е.И. Эпидемиология и этиология рассеянного склероза // Рассеянный склероз / под ред. Е.И. Гусева, И.А. Завалишина, А.Н. Бойко. Москва: Реал Тайм, 2011.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок. Соответствие возрастных изменений микробного разнообразия в кишечнике (a) гипотетической временной шкале событий естественного развития рассеянного склероза, предложенной E. Granieri – М. Pugliatti, и (b) модифицированной А.Н. Бойко и др. [213].

Скачать (513KB)

© Эко-Вектор, 2022



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».