Роль микробиоты кишечника в патогенезе рассеянного склероза. Часть 1. Клинические и экспериментальные доказательства вовлечения микробиоты кишечника в развитие рассеянного склероза
- Авторы: Абдурасулова И.Н.1
-
Учреждения:
- Институт экспериментальной медицины
- Выпуск: Том 22, № 2 (2022)
- Страницы: 9-36
- Раздел: Аналитический обзор
- URL: https://bakhtiniada.ru/MAJ/article/view/108241
- DOI: https://doi.org/10.17816/MAJ108241
- ID: 108241
Цитировать
Аннотация
В обзоре обсуждается комплексная роль кишечной микробиоты в патогенезе рассеянного склероза, обобщены данные исследований изменений состава кишечного микробиома у пациентов с рассеянным склерозом и приведены доказательства вовлечения кишечной микробиоты в развитие экспериментального аутоиммунного энцефаломиелита у животных — общепринятой модели рассеянного склероза.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Ирина Николаевна Абдурасулова
Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: i_abdurasulova@mail.ru
ORCID iD: 0000-0003-1010-6768
SPIN-код: 5019-3940
Scopus Author ID: 22233604700
канд. биол. наук, заведующая Физиологическим отделом им. И.П. Павлова
Россия, Санкт-ПетербургСписок литературы
- Lassmann H., Brück W., Lucchinetti C. The immunopathology of multiple sclerosis: an overview // Brain Pathol. 2007. Vol. 17, No. 2. P. 210–218. doi: 10.1111/j.1750-3639.2007.00064.x
- Kingwell E., Marriott J.J., Jette N. et al. Incidence and prevalence of multiple sclerosis in Europe: a systematic review // BMC Neurol. 2013. Vol. 13. P. 128. doi: 10.1186/1471-2377-13-128
- Stys P.K., Zamponi G.W., van Minnen J., Geurts J.J. Will the real multiple sclerosis please stand up? // Nat. Rev. Neurosci. 2012. Vol. 13, No. 7. P. 507–514. doi: 10.1038/nrn3275
- Koch-Henriksen N., Sorensen P.S. The changing demographic pattern of multiple sclerosis epidemiology // Lancet Neurol. 2010. Vol. 9, No. 5. P. 520–532. doi: 10.1016/S1474-4422(10)70064-8
- Filippi M., Bar-Or A., Piehl F. et al. Multiple sclerosis // Nat. Rev. Dis. Primers. 2018. Vol. 4, No. 1. P. 43. doi: 10.1038/s41572-018-0041-4
- Dobson R., Giovannoni G. Multiple sclerosis — a review // Eur. J. Neurol. 2019. Vol. 26, No. 1. P. 27–40. doi: 10.1111/ene.13819
- Orton S.M., Herrera B.M., Yee I.M. et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study // Lancet Neurol. 2006. Vol. 5, No. 11. P. 932–936. doi: 10.1016/S1474-4422(06)70581-6
- Trojano M., Lucchese G., Graziano G. et al. Geographical variations in sex ratio trends over time in multiple sclerosis // PLoS One. 2012. Vol. 7, No. 10. P. e48078. doi: 10.1371/journal.pone.0048078
- Tomassini V., Pozzilli C. Sex hormone, brain damage and clinical course of multiple sclerosis // J. Neurol. Sci. 2009. Vol. 286, No. 1–2. P. 35–39. doi: 10.1016/j.jns.2009.04.014
- Noseworthy J.H., Lucchinetti C., Rodriguez M., Weinshenker B.G. Multiple sclerosis // N. Engl. J. Med. 2000. Vol. 343, No. 13. P. 938–952. doi: 10.1056/NEJM200009283431307
- Compston A., Coles A. Multiple sclerosis // Lancet. 2008. Vol. 372, No. 9648. P. 1502–1517. doi: 10.1016/S0140-6736(08)61620-7
- Rovaris M., Confavreux C., Furlan R. et al. Secondary progressive multiple sclerosis: current knowledge and future challenges // Lancet Neurol. 2006. Vol. 5, No. 4. P. 343–354. doi: 10.1016/S1474-4422(06)70410-0
- Peterson J.W., Trapp B.D. Neuropathobiology of multiple sclerosis // Neurol. Clin. 2005. Vol. 23, No. 1. P. 107–129, vi-vii. doi: 10.1016/j.ncl.2004.09.008
- Levinthal D.J., Rahman F., Nusrat S. et al. Adding to the burden: gastrointestinal symptoms and syndromes in multiple sclerosis // Mult. Scler. Int. 2013. Vol. 2013. P. 319201. doi: 10.1155/2013/319201
- Ghasemi N., Razavi S., Nikzad E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy // Cell J. 2017. Vol. 19, No. 1. P. 1–10. doi: 10.22074/cellj.2016.4867
- Trapp B.D., Peterson J., Ransohoff R.M. et al. Axonal transection in the lesions of multiple sclerosis // N. Engl. J. Med. 1998. Vol. 338, No. 5. P. 278–285. doi: 10.1056/NEJM199801293380502
- Lucchinetti C., Brück W., Parisi J. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination // Ann. Neurol. 2000. Vol. 47, No. 6. P. 707–717. doi: 10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q
- Sospedra M., Martin R. Immunology of multiple sclerosis // Annu. Rev. Immunol. 2005. Vol. 23. P. 683–747. doi: 10.1146/annurev.immunol.23.021704.115707
- Frohman E.M., Racke M.K., Raine C.S. Multiple sclerosis — the plaque and its pathogenesis // N. Engl. J. Med. 2006. Vol. 354, No. 9. P. 942–955. doi: 10.1056/NEJMra052130
- Frischer J.M., Bramow S., Dal-Bianco A. et al. The relation between inflammation and neurodegeneration in multiple sclerosis brain // Brain. 2009. Vol. 132, No. Pt 5. P. 1175–1189. doi: 10.1093/brain/awp070
- Weygandt M., Hackmack K., Pfüller C. et al. MRI pattern recognition in multiple sclerosis normal-appearing brain areas // PLoS One. 2011. Vol. 6, No. 6. P. e21138. doi: 10.1371/journal.pone.0021138
- Venken K., Hellings N., Broekmans T. et al. Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression // J. Immunol. 2008. Vol. 180, No. 9. P. 6411–6420. doi: 10.4049/jimmunol.180.9.6411
- Nylander A., Hafler D.A. Multiple sclerosis // J. Clin. Invest. 2012. Vol. 122, No. 4. P. 1180–1188. doi: 10.1172/JCI58649
- El Behi M., Dubucquoi S., Lefranc D. et al. New insights into cell responses involved in experimental autoimmune encephalomyelitis and multiple sclerosis // Immunol. Lett. 2005. Vol. 96, No. 1. P. 11–26. doi: 10.1016/j.imlet.2004.07.017
- Абдурасулова И.Н., Клименко В.М. Роль иммунных и глиальных клеток в процессах нейродегенерации // Медицинский академический журнал. 2011. Т. 11, № 1. С. 12–29. doi: 10.17816/MAJ11112-29
- Абдурасулова И.Н., Клименко В.М. Гетерогенность механизмов повреждения нервных клеток при демиелинизирующих аутоиммунных заболеваниях ЦНС // Российский физиологический журнал им. И.М. Сеченова. 2010. Т. 96, № 1. С. 50–68.
- Miller E., Wachowicz B., Majsterek I. Advances in antioxidative therapy of multiple sclerosis // Curr. Med. Chem. 2013. Vol. 20, No. 37. P. 4720–4730. doi: 10.2174/09298673113209990156
- Trapp B.D., Nave K.A. Multiple sclerosis: an immune or neurodegenerative disorder? // Annu. Rev. Neurosci. 2008. Vol. 31. P. 247–269. doi: 10.1146/annurev.neuro.30.051606.094313
- Weng M., Walker W.A. The role of gut microbiota in programming the immune phenotype // J. Dev. Orig. Health Dis. 2013. Vol. 4, No. 3. P. 203–214. doi: 10.1017/S2040174412000712
- Wekerle H. Nature plus Nurture: the triggering of multiple sclerosis // Swiss. Med. Wkly. 2015. Vol. 145. P. w14189. doi: 10.4414/smw.2015.14189
- Eftekharian M.M., Sayad A., Omrani M.D. et al. Single nucleotide polymorphism in the FOXP3 gene are associated with increased risk of relapsing-remitting multiple sclerosis // Hum. Antibodies. 2016. Vol. 24, No. 3–4. P. 85–90. doi: 10.3233/HAB-160299
- Wawrusiewicz-Kurylonek N., Chorąży M., Posmyk R. et al. The FOXP3 rs3761547 gene polymorphism in multiple sclerosis as a male-specific risk factor // Neuromolecular Med. 2018. Vol. 20, No. 4. P. 537–543. doi: 10.1007/s12017-018-8512-z
- Bush W.S., Sawcer S.J., de Jager P.L. et al. Evidence for polygenic susceptibility to multiple sclerosis — the shape of things to come // Am. J. Hum. Genet. 2010. Vol. 86, No. 4. P. 621–625. doi: 10.1016/j.ajhg.2010.02.027
- International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2; Sawcer S., Hellenthal G., Pirinen M. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis // Nature. 2011. Vol. 476, No. 7359. P. 214–219. doi: 10.1038/nature10251
- Beecham A.H., Patsopoulos N.A., Xifara D.K. et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis // Nat. Genet. 2013. Vol. 45, No. 11. P. 1353–1360. doi: 10.1038/ng.2770
- Lill C.M., Luessi F., Alcina A. et al. Genome-wide significant association with seven novel multiple sclerosis risk loci // J. Med. Genet. 2015. Vol. 52, No. 12. P. 848–855. doi: 10.1136/jmedgenet-2015-103442
- Wang J.H., Pappas D., de Jager P.L. et al. Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data // Genome Med. 2011. Vol. 3, No. 1. P. 3. doi: 10.1186/gm217
- Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20 // Nat. Genet. 2009. Vol. 41, No. 7. P. 824–828. doi: 10.1038/ng.396
- International Multiple Sclerosis Genetics Consortium: Patsopoulos N.A., Baranzini S.E., Santaniello A. et al. The multiple sclerosis genomic map: Role of peripheral immune cells and resident microglia in susceptibility // bioRxiv. 2017. doi: 10.1101/143933
- Lioudyno V., Abdurasulova I., Bisaga G. et al. Single nucleotide polymorphism rs948854 in human galanin gene and multiple sclerosis: a gender-specific risk factor // J. Neurosci. Res. 2017. Vol. 95, No. 1–2. P. 644–651. doi: 10.1002/jnr.23887
- Lioudyno V., Abdurasulova I., Tatarinov A. et al. The effect of galanin gene polymorphism RS948854 on the severity of multiple sclerosis course: a significant association with the age of onset // Mult. Scler. Relat. Disord. 2020. Vol. 37. P. 101439. doi: 10.1016/j.msard.2019.101439
- Lioudyno V., Abdurasulova I., Negoreeva I. et al. Common genetic variant rs2821557 in KCNA3 is linked to a severity of multiple sclerosis // J. Neurosci. Res. 2021. Vol. 99, No. 1. P. 200–208. doi: 10.1002/jnr.24596
- Mumford C.J., Wood N.W., Kellar-Wood H. et al. The British Isles survey of multiple sclerosis in twins // Neurology. 1994. Vol. 44, No. 1. P. 11–15. doi: 10.1212/wnl.44.1.11
- Willer C.J., Dyment D.A., Risch N.J. et al. Twin concordance and sibling recurrence rates in multiple sclerosis // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100, No. 22. P. 12877–12882. doi: 10.1073/pnas.1932604100
- Olsson T., Barcellos L.F., Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis // Nat. Rev. Neurol. 2017. Vol. 13, No. 1. P. 25–36. doi: 10.1038/nrneurol.2016.187
- Leibowitz U., Antonovsky A., Medalie J.M. et al. Epidemiological study of multiple sclerosis in Israel. II. Multiple sclerosis and level of sanitation // J. Neurol. Neurosurg. Psychiatry. 1966. Vol. 29, No. 1. P. 60–68. doi: 10.1136/jnnp.29.1.60
- Alotaibi S., Kennedy J., Tellier R. et al. Epstein-barr virus in pediatric multiple sclerosis // JAMA. 2004. Vol. 291, No. 15. P. 1875–1879. doi: 10.1001/jama.291.15.1875
- Munger K.L., Levin L.I., Hollis B.W. et al. Serum 25-Hydroxyvitamin D levels and risk of multiple sclerosis // JAMA. 2006. Vol. 296, No. 23. P. 2832–2838. doi: 10.1001/jama.296.23.2832
- Spelman T., Gray O., Trojano M. et al. Seasonal variation of relapse rate in multiple sclerosis is latitude dependen // Ann. Neurol. 2014. Vol. 76, No. 6. P. 880–890. doi: 10.1002/ana.24287
- Ascherio A., Munger K.L., White R. et al. Vitamin D as an early predictor of multiple sclerosis activity and progression // JAMA Neurol. 2014. Vol. 71, No. 3. P. 306–314. doi: 10.1001/jamaneurol.2013.5993
- Farez M.F., Fiol M.P., Gaitán M.I. et al. Sodium intake is associated with increased disease activity in multiple sclerosis // J. Neurol. Neurosurg. Psychiatry. 2015. Vol. 86, No. 1. P. 26–31. doi: 10.1136/jnnp-2014-307928
- Bagur M.J., Murcia M.A., Jimenez-Monreal A.M. et al. Influence of diet in multiple sclerosis: a systematic review // Adv. Nutr. 2017. Vol. 8, No. 3. P. 463–472. doi: 10.3945/an.116.014191
- Hedström A.K., Alfredsson L., Olsson T. Environmental factors and their interactions with risk genotypes in MS susceptibility // Curr. Opin. Neurol. 2016. Vol. 29, No. 3. P. 293–298. doi: 10.1097/WCO.0000000000000329
- Mohr D.C. Stress and multiple sclerosis // J. Neurol. 2007. Vol. 254 Suppl 2. P. II65–II68. doi: 10.1007/s00415-007-2015-4
- Artemiadis A.K., Anagnostouli M.C., Alexopoulos E.C. Stress as a risk factor for multiple sclerosis onset or relapse: a systematic review // Neuroepidemiology. 2011. Vol. 36, No. 2. P. 109–120. doi: 10.1159/000323953
- Hawkes C.H. Smoking is a risk factor for multiple sclerosis: a meta-analysis // Mult. Scler. 2007. Vol. 13, No. 5. P. 610–615. doi: 10.1177/1352458506073501
- Jafari N., Hintzen R.Q. The association between cigarette smoking and multiple sclerosis // J. Neurol. Sci. 2011. Vol. 311, No. 1–2. P. 78–85. doi: 10.1016/j.jns.2011.09.008
- Munger K.L. Childhood obesity is a risk factor for multiple sclerosis // Mult. Scler. 2013. Vol. 19, No. 13. P. 1800. doi: 10.1177/1352458513507357
- Jahanfar S., Duggan T., Tkachuk S., Tremlett H. Factors associated with onset, relapses or progression in multiple sclerosis: a systematic review // Neurotoxicology. 2017. Vol. 61. P. 189–212. doi: 10.1016/j.neuro.2016.03.020
- Granieri E., Casetta I., Tola M.R., Ferrante P. Multiple sclerosis: infectious hypothesis // Neurol. Sci. 2001. Vol. 22, No. 2. P. 179–185. doi: 10.1007/s100720170021
- Haegert D.G. The initiation of multiple sclerosis: a new infectious hypothesis // Med. Hypotheses. 2003. Vol. 60, No. 2. P. 165–170. doi: 10.1016/s0306-9877(02)00349-3
- Challoner P.B., Smith K.T., Parker J.D. et al. Plaque associated expression of human herpesvirus 6 in multiple sclerosis // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92, No. 16. P. 7440–7444. doi: 10.1073/pnas.92.16.7440
- Soldan S.S., Berti R., Salem N. et al. Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA // Nat. Med. 1997. Vol. 3, No. 12. P. 1394–1397. doi: 10.1038/nm1297-1394
- Ascherio A., Munch M. Epstein–Barr virus and multiple sclerosis // Epidemiology. 2000. Vol. 11, No. 2. P. 220–224. doi: 10.1097/00001648-2000030000-00023
- Fierz W. Multiple sclerosis: an example of pathogenic viral interaction? // Virol. J. 2017. Vol. 14, No. 1. P. 42. doi: 10.1186/s12985-017-0719-3
- Antony J.M., DesLauriers A.M., Bhat R.K. et al. Human endogenous retroviruses and multiple sclerosis: Innocent bystanders or disease determinants? // Biochim. Biophys. Acta. 2011. Vol. 1812, No. 2. P. 162–176. doi: 10.1016/j.bbadis.2010.07.016
- Bahar M., Ashtari F., Aghaei M. et al. Mycoplasma pneumonia seroposivity in Iranian patients with relapsing-remitting multipl sclerosis: a randomized case-control study // J. Pak. Med. Assoc. 2012. Vol. 62, No. 3 Suppl 2. P. S6–8.
- Munger K.L., Peeling R.W., Hernan M.A. Infection with Chlamydia pneumoniae and risk of multiple sclerosis // Epidemiology. 2003. Vol. 14, No. 2. P. 141–147. doi: 10.1097/01.EDE.0000050699.23957.8E
- Buljevac D., Flach H.Z., Hop W.C. et al. Prospective study on the relationship between infections and multiple sclerosis exacerbations // Brain. 2002. Vol. 125, No. Pt 5. P. 952–960. doi: 10.1093/brain/awf098
- Steelman A.J. Infection as an environmental trigger of multiple sclerosis disease exacerbation // Front. Immunol. 2015. Vol. 6. P. 520. doi: 10.3389/fimmu.2015.00520
- Kurtzke J.F. A reassessment of the distribution of multiple sclerosis. Part one // Acta Neurol. Scand. 1975. Vol. 51, No. 2. P. 110–136. doi: 10.1111/j.1600-0404.1975.tb01364.x
- Browne P., Chandraratna D., Angood C. et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity // Neurology. 2014. Vol. 83, No. 11. P. 1022–1024. doi: 10.1212/WNL.0000000000000768
- Osoegawa M., Kira J., Fukazawa T. et al. Temporal changes and geographical differences in multiple sclerosis phenotypes in Japanese: nationwide survey results over 30 years // Mult. Scler. 2009. Vol. 15, No. 2. P. 159–173. doi: 10.1177/1352458508098372
- Houzen H., Niino M., Hata D. et al. Increasing prevalence and incidence of multiple sclerosis in northern Japan // Mult. Scler. 2008. Vol. 14, No. 7. P. 887–892. doi: 10.1177/1352458508090226
- Jancic J., Nikolic B., Ivancevic N. et al. Multiple sclerosis in pediatrics: current concepts and treatment options // Neurol. Ther. 2016. Vol. 5, No. 2. P. 131–143. doi: 10.1007/s40120-016-0052-6
- Strachan D.P. Hay fever, hygiene, and household size // BMJ. 1989. Vol. 299, No. 6710. P. 1259–1260. doi: 10.1136/bmj.299.6710.1259
- Fleming J., Fabry Z. The hygiene hypothesis and multiple sclerosis // Ann. Neurol. 2007. Vol. 61, No. 2. P. 85–89. doi: 10.1002/ana.21092
- Krone B., Grange J.M. Paradigms in multiple sclerosis: time for a change, time for a unifying concept // Inflammopharmacol. 2011. Vol. 19, No. 4. P. 187–195. doi: 10.1007/s10787-011-0084-6
- Nielsen T.R., Rostgaard K., Nielsen N.M. et al. Multiple sclerosis after infectious mononucleosis // Arch. Neurol. 2007. Vol. 64, No. 1. P. 72–75. doi: 10.1001/archneur.64.1.72
- Esposito S., Bonavita S., Sparaco M. et al. The role of diet in multiple sclerosis: a review // Nutr. Neurosci. 2018. Vol. 21, No. 6. P. 377–390. doi: 10.1080/1028415X.2017.1303016
- Kira J., Yamasaki K., Horiuchi I. et al. Changes in the clinical phenotypes of multiple sclerosis during the past 50 years in Japan // J. Neurol. Sci. 1999. Vol. 166, No. 1. P. 53–57. doi: 10.1016/s0022-510x(99)00115-x
- Gimeno D., Kivimäki M., Brunner E.J. et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study // Psychol. Med. 2009. Vol. 39, No. 3. P. 413–423. doi: 10.1017/S0033291708003723
- Berer K., Krishnamoorthy G. Commensal gut flora and brain autoimmunity: a love or hate affair? // Acta Neuropathol. 2012. Vol. 123, No. 5. P. 639–651. doi: 10.1007/s00401-012-0949-9
- Brown J., Quattrochi B., Everett C. et al. Gut commensals, dysbiosis, and immune response imbalance in the pathogenesis of multiple sclerosis // Mult. Scler. 2021. Vol. 27, No. 6. P. 807–811. doi: 10.1177/1352458520928301
- Barcellos L.F., Oksenberg J.R., Green A.J. et al. Genetic basic for clinical expression in multiple sclerosis // Brain. 2002. Vol. 125, No. Pt 1. P. 150–158. doi: 10.1093/brain/awf009
- Imani D., Azimi A., Salehi Z. et al. Association of nod-like receptor protein-3 single nucleotide gene polymorphisms and expression with the susceptibility to relapsing–remitting multiple sclerosis // Int. J. Immunogenet. 2018. Vol. 45, No. 6. P. 329–336. doi: 10.1111/iji.12401
- Racke M.K., Drew P.D. Toll-like receptors in multiple sclerosis // Curr. Top. Microbiol. Immunol. 2009. Vol. 336. P. 155–168. doi: 10.1007/978-3-642-00549-7_9
- Gharagozloo M., Gris K.V., Mahvelati T. et al. NLR-dependent regulation of inflammation in multiple sclerosis // Front. Immunol. 2018. Vol. 8. P. 2012. doi: 10.3389/fimmu.2017.02012
- Maghzi A.-H., Etemadifar M., Heshmat-Ghahdarijani K. et al. Cesarean delivery may increase the risk of multiple sclerosis // Mult. Scler. 2012. Vol. 18, No. 4. P. 468–471. doi: 10.1177/1352458511424904
- Nielsen N.M., Bager P., Stenager E. et al. Cesarean section and offspring’s risk of multiple sclerosis: a Danish nationwide cohort study // Mult. Scler. 2013. Vol. 19, No. 11. P. 1473–1477. doi: 10.1177/1352458513480010
- Conradi S., Malzahn U., Paul F. et al. Breastfeeding is associated with lower risk for multiple sclerosis // Mult. Scler. 2013. Vol. 19, No. 5. P. 553–558. doi: 10.1177/1352458512459683
- Ragnedda G., Leoni S., Parpinel M. et al. Reduced duration of breastfeeding is associated with a higher risk of multiple sclerosis in both Italian and Norwegian adult males: the EnvIMS study // J. Neurol. 2015. Vol. 262, No. 5. P. 1271–1277. doi: 10.1007/s00415-015-7704
- Kleinewietfeld M., Manzel A., Titze J. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells // Nature. 2013. Vol. 496, No. 7446. P. 518–522. doi: 10.1038/nature11868
- Sedaghat F., Jessri M., Behrooz M. et al. Mediterranean diet adherence and risk of multiple sclerosis: a case-control study // Asia Pac. J. Clin. Nutr. 2016. Vol. 25, No. 2. P. 377–384. doi: 10.6133/apjcn.2016.25.2.12
- Andeweg S.P., Keşmir C., Dutilh B.E. Quantifying the impact of human leukocyte antigen on the human gut microbiota // mSphere. 2021. Vol. 6, No. 4. P. e00476–21. doi: 10.1128/mSphere.00476-21
- Carvalho F.A., Koren O., Goodrich J.K. et al. Transient inability to manage Proteobacteria promotes chronic gut inflammation in TLR5-deficient mice // Cell Host Microbe. 2012. Vol. 12, No. 2. P. 139–152. doi: 10.1016/j.chom.2012.07.004
- Knights D., Silverberg M.S., Weersma R.K. et al. Complex host genetics influence the microbiome in inflammatory bowel disease // Genome Med. 2014. Vol. 6, No. 12. P. 107. doi: 10.1186/s13073-014-0107-1
- Wang J., Thingholm L.B., Skiecevičienė J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota // Nat. Genet. 2016. Vol. 48, No. 11. P. 1396–1406. doi: 10.1038/ng.3695
- Bäckhed F., Roswall J., Peng Y. et al. Dynamics and stabilization of the human gut microbiome during the first year of life // Cell Host Microbe. 2015. Vol. 17, No. 5. P. 690–703. doi: 10.1016/j.chom.2015.04.004
- Ma J., Li Z., Zhang W. et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants // Sci. Rep. 2020. Vol. 10, No. 1. P. 15792. doi: 10.1038/s41598-020-72635-x
- Mueller S., Saunier K., Hanisch C. et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study // Appl. Environ. Microbiol. 2006. Vol. 72, No. 2. P. 1027–1033. doi: 10.1128/AEM.72.2.1027-1033.2006
- Singh P., Manning S.D. Impact of age and sex on the composition and abundance of the intestinal microbiota in individuals with and without enteric infections // Ann. Epidemiol. 2016. Vol. 26, No. 5. P. 380–385. doi: 10.1016/j.annepidem.2016.03.007
- Sinha T., Vich Vila A., Garmaeva S. et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles // Gut Microbes. 2019. Vol. 10, No. 3. P. 358–366. doi: 10.1080/19490976.2018.1528822
- Koliada A., Moseiko V., Romanenko M. et al. Sex differences in the phylum-level human gut microbiota composition // BMC Microbiol. 2021. Vol. 21, No. 1. P. 131. doi: 10.1186/s12866-021-02198-y
- Carvalho-Queiroz С., Johansson M.A., Persson J.-O. et al. Associations between EBV and CMV seropositivity, early exposures, and gut microbiota in a prospective birth cohort: A 10-Year follow-up // Front. Pediatr. 2016. Vol. 4. P. 93. doi: 10.3389/fped.2016.00093
- Hollins S.L., Hodgson D.M. Stress, microbiota, and immunity // Curr. Opin. Behav. Sci. 2019. Vol. 28. P. 66–71. doi: 10.1016/j.cobeha.2019.01.015
- De Filippo C., Cavalieri D., Di Paola M. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 33. P. 14691–14696. doi: 10.1073/pnas.1005963107
- Merra G., Noce A., Marrone G. et al. Influence of mediterranean diet on human gut microbiota // Nutrients. 2021. Vol. 13, No. 1. P. 7. doi: 10.3390/nu13010007
- Lee S.H., Yun Y., Kim S.J. et al. Association between cigarette smoking status and composition of gut microbiota: Population-based cross-sectional study // J. Clin. Med. 2018. Vol. 7, No. 9. P. 282. doi: 10.3390/jcm7090282
- Bervoets L., Van Hoorenbeeck K., Kortleven I. et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study // Gut Pathog. 2013. Vol. 5, No. 1. P. 10. doi: 10.1186/1757-4749-5-10
- Riva A., Borgo F., Lassandro C. et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations // Environ. Microbiol. 2017. Vol. 19, No. 1. P. 95–105. doi: 10.1111/1462-2920.13463
- Bora S.A., Kennett M.J., Smith P.B. et al. The gut microbiota regulates endocrine vitamin D methabolism through fibroblast growth factor 23 // Front. Immunol. 2018. Vol. 9. P. 408. doi: 10.3389/fimmu.2018.00408
- Tabatabaeizadeh S.A., Tafazoli N., Ferns G.A. et al. Vitamin D, the gut microbiome and inflammatory bowel disease // J. Res. Med. Sci. 2018. Vol. 23. P. 75. doi: 10.4103/jrms.JRMS_606_17
- Turnbaugh P.J., Ley R.E., Hamady M. et al. The human microbiome project // Nature. 2007. Vol. 449, No. 7164. P. 804–810. doi: 10.1038/nature06244
- Mai V., Draganov P.V. Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health // World J. Gastroenterol. 2009. Vol. 15, No. 1. P. 81–85. doi: 10.3748/wjg.15.81
- Lankelma J.M., Nieuwdorp M., de Vos W.M., Wiersinga W.J. The gut microbiota in internal medicine: implications for health and disease // Neth. J. Med. 2015. Vol. 73, No. 2. P. 61–68.
- Lozupone C.A., Stombaugh J.I., Gordon J.I. et al. Diversity, stability and resilience of the human gut microbiota // Nature. 2012. Vol. 489, No. 7415. P. 220–230. doi: 10.1038/nature11550
- McDermott A.J., Huffnagle G.B. The microbiome and regulation of mucosal immunity // Immunology. 2014. Vol. 142, No. 1. P. 24–31. doi: 10.1111/imm.12231
- Bäckhed F., Ley R.E., Sonnenburg J.L. et al. Host-bacterial mutualism in the human intestine // Science. 2005. Vol. 307, No. 5717. P. 1915–1920. doi: 10.1126/science.1104816
- Eckburg P.B., Bik E.M., Bernstein C.N. et al. Diversity of the human intestinal microbial flora // Science. 2005. Vol. 308, No. 5728. P. 1635–1638. doi: 10.1126/science.1110591
- Donaldson G.P., Lee S.M., Mazmanian S.K. Gut biogeography of the bacterial microbiota // Nat. Rev. Microbiol. 2016. Vol. 14, No. 1. P. 20–32. doi: 10.1038/nrmicro3552
- Schippa S., Conte M.P. Dysbiotic events in gut microbiota: impact on human health // Nutrients. 2014. Vol. 6, No. 12. P. 5786–5805. doi: 10.3390/nu6125786
- Ley R.E., Peterson D.A., Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine // Cell. 2006. Vol. 124, No. 4. P. 837–848. doi: 10.1016/j.cell.2006.02.017
- Bianconi E., Piovesan A., Facchin F. et al. An estimation of the number of cells in the human body // Ann. Hum. Biol. 2013. Vol. 40, No. 6. P. 463–471. doi: 10.3109/03014460.2013.807878
- Khanna S., Tosh P.K. A clinician’s primer on the microbiome in human health and disease // Mayo Clin. Proc. 2014. Vol. 89, No. 1. P. 107–114. doi: 10.1016/j.mayocp.2013.10.011
- Brestoff J.R., Artis D. Commensal bacteria at the interface of host metabolism and the immune system // Nat. Immunol. 2013. Vol. 14, No. 7. P. 676–684. doi: 10.1038/ni.2640
- Gill S.R., Pop M., Deboy R.T. et al. Metagenomic analysis of the human distal gut microbiome // Science. 2006. Vol. 312, No. 5778. P. 1355–1359. doi: 10.1126/science.1124234
- Hollister E.B., Gao C., Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health // Gastroenterology. 2014. Vol. 146, No. 6. P. 1449–1458. doi: 10.1053/j.gastro.2014.01.052
- Hood L. Tackling the microbiome // Science. 2012. Vol. 336, No. 6086. P. 1209. doi: 10.1126/science.1225475
- Strober W. Inside the microbial and immune labyrinth: gut microbes: friends or fiends? // Nat. Med. 2010. Vol. 16, No. 11. P. 1195–1197. doi: 10.1038/nm1110-1195
- Cerf-Bensussan N., Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes? // Nat. Rev. Immunol. 2010. Vol. 10, No. 10. P. 735–744. doi: 10.1038/nri2850
- Benson A.K., Kelly S.A., Legge R. et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 44. P. 18933–18938. doi: 10.1073/pnas.1007028107
- Xu J., Mahowald M., Ley R. et al. Evolution of symbiotic bacteria in the distal human intestine // PLoS Biol. 2007. Vol. 5, No. 7. P. e156. doi: 10.1371/journal.pbio.0050156
- Quigley E.M.M. Gut bacteria in health and disease // Gastroenterol. Hepatol. (NY). 2013. Vol. 9, No. 9. P. 560–569.
- Macfarlane S., Macfarlane G.T. Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut // Appl. Environ. Microbiol. 2006. Vol. 72, No. 9. P. 6204–6211. doi: 10.1128/AEM.00754-06
- Van der Waaij L.A., Harmsen H.J., Madjipour M. et al. Bacterial population analysis of human colon and terminal ileum biopsies with 16S rRNA-based fluorescent probes: commensal bacteria live in suspension and have no direct contact with epithelial cells // Inflamm. Bowel Dis. 2005. Vol. 11, No. 10. P. 865–871. doi: 10.1097/01.mib.0000179212.80778.d3
- Swidsinski A., Loening-Baucke V., Theissig F. et al. Comparative study of the intestinal mucus barrier in normal and inflamed colon // Gut. 2007. Vol. 56, No. 3. P. 343–350. doi: 10.1136/gut.2006.098160
- Carroll I.M., Ringel-Kulka T., Keku T.O. et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome // Am. J. Physiol. Gastrointest. Liver Physiol. 2011. Vol. 301, No. 5. P. G799–807. doi: 10.1152/ajpgi.00154.2011
- Atuma C., Strugala V., Allen A., Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo // Am. J. Physiol. Gastrointest. Liver Physiol. 2001. Vol. 280, No. 5. P. G922–G929. doi: 10.1152/ajpgi.2001.280.5.G922
- Johansson M.E., Phillipson M., Petersson J. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria // Proc. Natl. Acad. Sci. USA. 2008. Vol. 105, No. 39. P. 15064–15069. doi: 10.1073/pnas.0803124105
- Gordon H.A., Pesti L. The gnotobiotic animal as a tool in the study of host microbial relationship // Bacteriol. Rev. 1971. Vol. 35, No. 4. P. 390–429. doi: 10.1128/br.35.4.390-429.1971
- Falk P.G., Hooper L.V., Midtverd T., Gordon J.I. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology // Microbiol. Mol. Biol. Rev. 1998. Vol. 62, No. 4. P. 1157–1170. doi: 10.1128/MMBR.62.4.1157-1170.1998
- Sjögren Y.M., Tomicic S., Lundberg A. et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses // Clin. Exp. Allergy. 2009. Vol. 9, No. 12. P. 1842–1851. doi: 10.1111/j.1365-2222.2009.03326.x
- Martin R., Nauta A.J., Ben Amor K. et al. Early life: Gut microbiota and immune development in infancy // Benef. Microbes. 2010. Vol. 1, No. 4. P. 367–382. doi: 10.3920/BM2010.0027
- Hsiao E.Y., McBride S.W., Hsien S. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders // Cell. 2013. Vol. 155, No. 7. P. 1451–1463. doi: 10.1016/j.cell.2013.11.024
- Mazmanian S.K., Liu C.H., Tzianabos A.O., Kasper D.L. An immunoregulatory molecule of symbiotic bacteria directs maturation of the host immune system // Cell. 2005. Vol. 122, No. 1. P. 107–118. doi: 10.1016/j.cell.2005.05.007
- Sampson T.R., Mazmanian S.K. Control of brain development, function, and behavior by the microbiome // Cell Host Microbe. 2015. Vol. 17, No. 5. P. 565–576. doi: 10.1016/j.chom.2015.04.011
- Braniste V., Al-Asmakh M., Kowal C. et al. The gut microbiota influences blood brain barrier permeability in mice // Sci. Transl. Med. 2014. Vol. 6, No. 263. P. 263ra158. doi: 10.1126/scitranslmed.3009759
- Hoban A.E., Stilling R.M., Ryan F.J. et al. Regulation of prefrontal cortex myelination by the microbiota // Transl. Psychiatry. 2016. Vol. 6, No. 4. P. e774. doi: 10.1038/tp.2016.42
- Sassone-Corsi M., Raffatellu M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens // J. Immunol. 2015. Vol. 194, No. 9. P. 4081–4087. doi: 10.4049/jimmunol.1403169
- Hansen N.W., Sams A. The Microbiotic highway to health — new perspective on food structure, gut microbiota, and host inflammation // Nutrients. 2018. Vol. 10, No. 11. P. 1590. doi: 10.3390/nu10111590
- Guarner F., Malagelada J.R. Gut flora in health and disease // Lancet. 2003. Vol. 361, No. 9356. P. 512–519. doi: 10.1016/S0140-6736(03)12489-0
- Sekirov I., Russell S.L., Antunes L.C.M., Finlay B.B. Gut microbiota in health and disease // Physiol. Rev. 2010. Vol. 90, No. 3. P. 859–904. doi: 10.1152/physrev.00045.2009
- Sommer F., Bäckhed F. The gut microbiota — Masters of host development and physiology // Nat. Rev. Microbiol. 2013. Vol. 11, No. 4. P. 227–238. doi: 10.1038/nrmicro2974
- Rojo D., Méndez-García C., Raczkowska B.A. et al. Exploring the human microbiome from multiple perspectives: factors altering its composition and function // FEMS Microbiol. Rev. 2017. Vol. 41, No. 4. P. 453–478. doi: 10.1093/femsre/fuw046
- Cantarel B.L., Waubant E., Chehoud C. et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators // J. Investig. Med. 2015. Vol. 63, No. 5. P. 729–734. doi: 10.1097/JIM.0000000000000192
- Miyake S., Kim S., Suda W. et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belondind to Clostridia XIVa and IV clusters // PLoS One. 2015. Vol. 10, No. 9. P. e0137429. doi: 10.1371/journal.pone.0137429
- Chen J., Chia N., Kalari K.R. et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls // Sci. Rep. 2016. Vol. 6. P. 28484. doi: 10.1038/srep28484
- Jangi S., Gandhi R., Cox L.M. et al. Alterations of the human gut microbiome in multiple sclerosis // Nat. Commun. 2016. Vol. 7. P. 12015. doi: 10.1038/ncomms12015
- Tremlett H., Fadrosh D.W., Faruqi A.A. et al. Associations between the gut microbiota and host immune markers in pediatric multiple sclerosis and controls // BMC Neurol. 2016. Vol. 16, No. 1. P. 182. doi: 10.1186/s12883-016-0703-3
- Berer K., Gerdes L.A., Cekanaviciute E. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice // Proc. Natl. Acad. Sci. USA. 2017. Vol. 114, No. 40. P. 10719–10724. doi: 10.1073/pnas.1711233114
- Cekanaviciute E., Yoo B.B., Runia T.F. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models // Proc. Natl. Acad. Sci. USA. 2017. Vol. 114, No. 40. P. 10713–10718. doi: 10.1073/pnas.1711235114
- Cosorich I., Dalla-Costa G., Sorini C. et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis // Sci. Adv. 2017. Vol. 3, No. 7. P. e1700492. doi: 10.1126/sciadv.1700492
- Cekanaviciute E., Pröbstel A.-K., Thomann A. et al. Multiple sclerosis-associated changes in the composition and immune functions of spore-forming bacteria // mSystems. 2018. Vol. 3, No. 6. P. e00083–18. doi: 10.1128/mSystems.00083-18
- Forbes J.D., Chen C.-Y., Knox N.C. et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseases — does a common dysbiosis exist? // Microbiome. 2018. Vol. 6, No. 1. P. 221. doi: 10.1186/s40168-018-0603-4
- Abdurasulova I.N., Matsulevich A.V., Tarasova E.A. et al. Changes of intestinal microbiome in multiple sclerosis are associated with immune shift and psychoemotional disorders // Medical Academic Journal. 2019. Vol. 19, No. 1S. P. 51–54. doi: 10.17816/MAJ191S151-54
- Kozhieva M., Naumova N., Alikina T. et al. Primary progressive multiple sclerosis in a Russian cohort: relationship with gut bacterial diversity // BMC Microbiol. 2019. Vol. 19, No. 1. P. 309. doi: 10.1186/s12866-019-1685-2
- Oezguen N., Yalcinkaya N., Kücükali C.I. et al. Microbiota stratification identifies disease-specific alterations in neuro-Behçet’s disease and multiple sclerosis // Clin. Exp. Rheumatol. 2019. Vol. 37 Suppl 121, No. 6. P. 58–66.
- Sand I.K., Zhu Y., Ntranos A. et al. Disease-modifying therapies alter gut microbial composition in MS // Neurol. Neuroimmunol. Neuroinflamm. 2019. Vol. 6, No. 1. P. e517. doi: 10.1212/NXI.0000000000000517
- Storm-Larsen C., Myhr K.-M., Farbu E. et al. Gut microbiota composition during a 12-week intervention with delayed-release dimethyl fumarate in multiple sclerosis — a pilot trial // Mult. Scler. J. Exp. Transl. Clin. 2019. Vol. 5, No. 4. P. 2055217319888767. doi: 10.1177/2055217319888767
- Ventura R.E., Iizumi1 T., Battaglia T. et al. Gut microbiome of treatment-naïve MS patients of different ethnicities early in disease course // Sci. Rep. 2019. Vol. 9, No. 1. P. 16396. doi: 10.1038/s41598-019-52894-z
- Zeng Q., Gong J., Liu X. et al. Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis // Neurochem. Int. 2019. Vol. 129. P. 104468. doi: 10.1016/j.neuint.2019.104468
- Castillo-Álvarez F., Pérez-Matute P., Oteo J.A., Marzo-Sola M.E. The influence of interferon β-1b on gut microbiota composition in patients with multiple sclerosis // Neurologia (Engl Ed). 2021. Vol. 36, No. 7. P. 495–503. doi: 10.1016/j.nrleng.2020.05.006
- Kishikawa T., Ogawa K., Motooka D. et al. A Metagenome-wide association study of gut microbiome in patients with multiple sclerosis revealed novel disease pathology // Front. Cell. Infect. Microbiol. 2020. Vol. 10. P. 585973. doi: 10.3389/fcimb.2020.585973
- Ling Z., Cheng Y., Yan X. et al. Alterations of the fecal microbiota in Chinese patients with multiple sclerosis // Front. Immunol. 2020. Vol. 11. P. 590783. doi: 10.3389/fimmu.2020.590783
- Reynders T., Devolder L., Valles-Colomer M. et al. Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes // Ann. Clin. Transl. Neurol. 2020. Vol. 7, No. 4. P. 406–419. doi: 10.1002/acn3.51004
- Takewaki D., Suda W., Sato W. et al. Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis // PNAS. 2020. Vol. 117, No. 36. P. 22402–22412. doi: 10.1073/pnas.2011703117
- Ní Choileáin S., Kleinewietfeld M., Raddassi K. et al. CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiota // J. Translat. Autoimmun. 2020. Vol. 3. P. 100032. doi: 10.1016/j.jtauto.2019.100032
- Cox L.M., Maghzi A.H., Liu S. et al. The gut microbiome in progressive multiple sclerosis // Ann. Neurol. 2021. Vol. 89, No. 6. P. 1195–1211. doi: 10.1002/ana.26084
- Galluzzo P., Capri F.C., Vecchioni L. et al. Comparison of the intestinal microbiome of Italian patients with multiple sclerosis and their household relatives // Life (Basel). 2021. Vol. 11, No. 7. P. 620. doi: 10.3390/life11070620
- Pellizoni F.P., Leite A.Z., de Campos Rodrigues N. et al. Detection of dysbiosis and increased intestinal permeability in Brazilian patients with relapsing-remitting multiple sclerosis // Int. J. Environ. Res. Public Health. 2021. Vol. 18, No. 9. P. 4621. doi: 10.3390/ijerph18094621
- Tremlett H., Zhu F., Arnold D. et al. The gut microbiota in pediatric multiple sclerosis and demyelinating syndromes // Ann. Clin. Transl. Neurol. 2021. Vol. 8, No. 12. P. 2252–2269. doi: 10.1002/acn3.51476
- Yadav M., Ali S., Shrode R.L. et al. Multiple sclerosis patients have an altered gut mycobiome and increased fungal to bacterial richness // bioRxiv. 2022. Vol. 17, No. 4. P. e0264556. doi: 10.1101/2021.08.30.458212
- Vallino A., Dos Santos A., Mathe C.V. et al. Gut bacteria Akkermansia elicit a specific IgG response in CSF of patients with MS // Neurol. Neuroimmunol. Neuroinflamm. 2020. Vol. 7, No. 3. P. e688. doi: 10.1212/NXI.0000000000000688
- Hirano A., Umeno J., Okamoto Y. et al. Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis // J. Gastroenterol. Hepatol. 2018. Vol. 33, No. 9. P. 1590–1597. doi: 10.1111/jgh.14129
- Rumah K.R., Linden J., Fischetti V.A., Vartanian T. Isolation of clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease // PLoS One. 2013. Vol. 8, No. 10. P. e76359. doi: 10.1371/journal.pone.0076359
- Абдурасулова И.Н., Тарасова Е.А., Ермоленко Е.И. и др. При рассеянном склерозе изменяется качественный и количественный состав микробиоты кишечника // Медицинский академический журнал. 2015. Т. 15, № 3. С. 55–67.
- Mete A., Garcia J., Ortega J. et al. Brain lesions associated with clostridium perfringens type D epsilon toxin in a Holstein heifer calf // Vet. Pathol. 2013. Vol. 50, No. 5. P. 765–768. doi: 10.1177/0300985813476058
- Dorca-Arévalo J., Soler-Jover A., Gibert M. et al. Binding of epsilon-toxin from Clostridium perfringens in the nervous system // Vet. Microbiol. 2008. Vol. 131, No. 1–2. P. 14–25. doi: 10.1371/journal.pone.0102417
- Lonchamp E., Dupont J.-L., Wioland L. et al. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release // PLoS One. 2010. Vol. 5, No. 9. P. e13046. doi: 10.1371/journal.pone.0013046
- Finnie J.W., Blumbergs P.C., Manavis J. Neuronal damage produced in rat brains by Clostridium perfringens type D epsilon toxin // J. Comp. Pathol. 1999. Vol. 120, No. 4. P. 415–420. doi: 10.1053/jcpa.1998.0289
- Yatsunenko T., Rey F.E., Manary M.J. et al. Human gut microbiome viewed across age and geography // Nature. 2012. Vol. 486, No. 7402. P. 222–227. doi: 10.1038/nature11053
- Абдурасулова И.Н., Тарасова Е.А., Никифорова И.Г. и др. Особенности состава микробиоты кишечника у пациентов с рассеянным склерозом, получающих препараты, изменяющие течение рассеянного склероза // Журнал неврологии и психиатрии им. С.С. Корсакова. 2018. Т. 118, № 8–2. С. 62–69. doi: 10.17116/jnevro201811808262
- Tarasova E.A., Lioudyno V.I., Matsulevich A.V. et al. Features of the intestinal microbiota composition in multiple sclerosis patients receiving oral disease-modifying therapy // Medical Academic Journal. 2021. Vol. 21, No. 4. P. 47–56. doi: 10.17816/MAJ88595
- Buscarinu M.C., Fornasiero A., Romano S. et al. The contribution of gut barrier changes to multiple sclerosis pathophysiology // Front. Immunol. 2019. Vol. 10. P. 1916. doi: 10.3389/fimmu.2019.01916
- Hermann-Bank M.L., Skovgaard K., Stockmarr A. et al. The Gut Microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity // BMC Genomics. 2013. Vol. 14. P. 788. doi: 10.1186/1471-2164-14-788
- Bang S., Yoo D.A., Kim S.-J. et al. Establishment and evaluation of prediction model for multiple disease classification based on gut microbial data // Sci. Rep. 2019. Vol. 9, No. 1. P. 10189. doi: 10.1038/s41598-019-46249-x
- Gold R., Linington C., Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research // Brain. 2006. Vol. 129, No. Pt 8. P. 1953–1971. doi: 10.1093/brain/awl075
- Ben-Nun A., Kaushansky N., Kawakami N. et al. From classic to spontaneous and humanized models of multiple sclerosis: Impact on understanding pathogenesis and drug development // J. Autoimmun. 2014. Vol. 54. P. 33–50. doi: 10.1016/j.jaut.2014.06.004
- Krishnamoorthy G., Lassmann H., Wekerle H., Holz A. Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation // J. Clin. Invest. 2006. Vol. 116, No. 9. P. 2385–2392. doi: 10.1172/JCI28330
- Ochoa-Reparaz J., Mielcarz D.W., Ditrio L.E. et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis // J. Immunol. 2009. Vol. 183, No. 10. P. 6041–6050. doi: 10.4049/jimmunol.0900747
- Goverman J., Woods A., Larson L. et al. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity // Cell. 1993. Vol. 72, No. 4. P. 551–560. doi: 10.1016/0092-8674(93)90074-z
- Berer K., Mues M., Koutrolos M. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination // Nature. 2011. Vol. 479, No. 7374. P. 538–541. doi: 10.1038/nature10554
- Ivanov I.I., Frutos Rde L., Manel N. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine // Cell. Host. Microbe. 2008. Vol. 4, No. 4. P. 337–349. doi: 10.1016/j.chom.2008.09.009
- Ivanov I.I., Atarashi K., Manel N. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria // Cell. 2009. Vol. 139, No. 3. P. 485–498. doi: 10.1016/j.cell.2009.09.033
- Lee Y.K., Menezes J.S., Umesaki Y., Mazmanian S.K. Proinflammatory T-cell responces to gut microbiota promote experimental autoimmune encephalomyelitis // Proc. Natl. Acad. Sci. USA. 2011. Vol. 108 Suppl 1, No. Suppl 1. P. 4615–4622. doi: 10.1073/pnas.1000082107
- Sakaguchi S., Yamaguchi T., Nomura T., Ono M. Regulatory T cells and immune tolerance // Cell. 2008. Vol. 133, No. 5. P. 775–787. doi: 10.1016/j.cell.2008.05.009
- Round J.L., Mazmanian S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, No. 27. P. 12204–12209. doi: 10.1073/pnas.0909122107
- Round J.L., Mazmanian S.K. The gut microbiota shapes intestinal immune responses during health and disease // Nat. Rev. Immunol. 2009. Vol. 9, No. 5. P. 313–323. doi: 10.1038/nri2515
- Clemente J.C., Ursell L.K., Parfrey L.W., Knight R. The impact of the gut microbiota on human health: an integrative view // Cell. 2012. Vol. 148, No. 6. P. 1258–1270. doi: 10.1016/j.cell.2012.01.035
- Silva Y.P., Bernardi A., Frozza R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication // Front. Endocrinol. (Lausanne). 2020. Vol. 11. P. 25. doi: 10.3389/fendo.2020.00025
- Gandy K., Zhang J., Nagarkatti P., Nagarkatti M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models // Sci. Rep. 2019. Vol. 9, No. 1. P. 6923. doi: 10.1038/s41598-019-43356-7
- Бойко А.Н., Фаворова О.О., Кулакова О.Г., Гусев Е.И. Эпидемиология и этиология рассеянного склероза // Рассеянный склероз / под ред. Е.И. Гусева, И.А. Завалишина, А.Н. Бойко. Москва: Реал Тайм, 2011.
Дополнительные файлы
