Role of the intestinal microbiota in the pathogenesis of multiple sclerosis. Part 1. Clinical and experimental evidence for the involvement of the gut microbiota in the development of multiple sclerosis
- Authors: Abdurasulova I.N.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 22, No 2 (2022)
- Pages: 9-36
- Section: Analytical reviews
- URL: https://bakhtiniada.ru/MAJ/article/view/108241
- DOI: https://doi.org/10.17816/MAJ108241
- ID: 108241
Cite item
Abstract
The review discusses the complex role of the intestinal microbiota in the pathogenesis of multiple sclerosis, summarizes data from studies of changes in the composition of the intestinal microbiome in patients with multiple sclerosis, and provides evidence of the involvement of the intestinal microbiota in the development of experimental autoimmune encephalomyelitis in animals, a valid model of multiple sclerosis.
Full Text
##article.viewOnOriginalSite##About the authors
Irina N. Abdurasulova
Institute of Experimental Medicine
Author for correspondence.
Email: i_abdurasulova@mail.ru
ORCID iD: 0000-0003-1010-6768
SPIN-code: 5019-3940
Scopus Author ID: 22233604700
Cand. Sci. (Biol.), Head of the Pavlov Department of Physiology
Russian Federation, Saint PetersburgReferences
- Lassmann H, Brück W, Lucchinetti C. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 2007;17(2):210–218. doi: 10.1111/j.1750-3639.2007.00064.x
- Kingwell E, Marriott JJ, Jette N, et al. Incidence and prevalence of multiple sclerosis in Europe: a systematic review. BMC Neurol. 2013;13:128. doi: 10.1186/1471-2377-13-128
- Stys PK, Zamponi GW, van Minnen J, Geurts JJ. Will the real multiple sclerosis please stand up? Nat Rev Neurosci. 2012;13(7):507–514. doi: 10.1038/nrn3275
- Koch-Henriksen N, Sorensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010;9(5):520–532. doi: 10.1016/S1474-4422(10)70064-8
- Filippi M, Bar-Or A, Piehl F, et al. Multiple sclerosis. Nat Rev Dis Primers. 2018;4(1):43. doi: 10.1038/s41572-018-0041-4
- Dobson R. Giovannoni G. Multiple sclerosis — a review. Eur J Neurol. 2019;26(1):27–40. doi: 10.1111/ene.13819
- Orton SM, Herrera BM, Yee IM, et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol. 2006;5(11):932–936. doi: 10.1016/S1474-4422(06)70581-6
- Trojano M, Lucchese G, Graziano G, et al. Geographical variations in sex ratio trends over time in multiple sclerosis. PLoS One. 2012;7(10):e48078. doi: 10.1371/journal.pone.0048078
- Tomassini V, Pozzilli C. Sex hormone, brain damage and clinical course of multiple sclerosis. J Neurol Sci. 2009;286(1–2):35–39. doi: 10.1016/j.jns.2009.04.014
- Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med. 2000;343(13):938–952. doi: 10.1056/NEJM200009283431307
- Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372(9648):1502–1517. doi: 10.1016/S0140-6736(08)61620-7
- Rovaris M, Confavreux C, Furlan R, et al. Secondary progressive multiple sclerosis: current knowledge and future challenges. Lancet Neurol. 2006;5(4):343–354. doi: 10.1016/S1474-4422(06)70410-0
- Peterson JW, Trapp BD. Neuropathobiology of multiple sclerosis. Neurol Clin. 2005;23(1):107–129, vi-vii. doi: 10.1016/j.ncl.2004.09.008
- Levinthal DJ, Rahman F, Nusrat S, et al. Adding to the burden: gastrointestinal symptoms and syndromes in multiple sclerosis. Mult Scler Int. 2013;2013:319201. doi: 10.1155/2013/319201
- Ghasemi N, Razavi S, Nikzad E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. 2017;19(1):1–10. doi: 10.22074/cellj.2016.4867
- Trapp BD, Peterson J, Ransohoff RM, et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338(5):278–285. doi: 10.1056/NEJM199801293380502
- Lucchinetti C, Brück W, Parisi J, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–717. doi: 10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q
- Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747. doi: 10.1146/annurev.immunol.23.021704.115707
- Frohman EM, Racke MK, Raine CS. Multiple sclerosis — the plaque and its pathogenesis. N Engl J Med. 2006;354(9):942–955. doi: 10.1056/NEJMra052130
- Frischer JM, Bramow S, Dal-Bianco A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brain. Brain. 2009;132(Pt 5):1175–1189. doi: 10.1093/brain/awp070
- Weygandt M, Hackmack K, Pfüller C, et al. MRI pattern recognition in multiple sclerosis normal-appearing brain areas. PLoS One. 2011;6(6):e21138. doi: 10.1371/journal.pone.0021138
- Venken K, Hellings N, Broekmans T, et al. Natural naive CD4+CD25+CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J Immunol. 2008;180(9):6411–6420. doi: 10.4049/jimmunol.180.9.6411
- Nylander A, Hafler DA. Multiple sclerosis. J Clin Invest. 2012;122(4):1180–1188. doi: 10.1172/JCI58649
- El Behi M, Dubucquoi S, Lefranc D, et al. New insights into cell responses involved in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Lett. 2005;96(1):11–26. doi: 10.1016/j.imlet.2004.07.017
- Abdurasulova IN, Klimenko VM. The role of immune and glial cells in neurodegenerative processes. Medical Academic Journal. 2011;1:12–29. (In Russ.). doi: 10.17816/MAJ11112-29
- Abdurasulova IN, Klimenko VM. Heterogeneity of the mechanisms of nerve cell damage in demyelinating autoimmune diseases of the CNS. J Neurosci Behav Physiol. 2011;41(4):364–374. doi: 10.1007/s11055-011-9424-7
- Miller E, Wachowicz B, Majsterek I. Advances in antioxidative therapy of multiple sclerosis. Curr Med Chem. 2013;20(37):4720–4730. doi: 10.2174/09298673113209990156
- Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008;31:247–269. doi: 10.1146/annurev.neuro.30.051606.094313
- Weng M, Walker WA. The role of gut microbiota in programming the immune phenotype. J Dev Orig Health Dis. 2013;4(3):203–214. doi: 10.1017/S2040174412000712
- Wekerle H. Nature plus Nurture: the triggering of multiple sclerosis. Swiss Med Wkly. 2015;145:w14189. doi: 10.4414/smw.2015.14189
- Eftekharian MM, Sayad A, Omrani MD, et al. Single nucleotide polymorphism in the FOXP3 gene are associated with increased risk of relapsing-remitting multiple sclerosis. Hum Antibodies. 2016;24(3–4):85–90. doi: 10.3233/HAB-160299
- Wawrusiewicz-Kurylonek N, Chorąży M, Posmyk R, et al. The FOXP3 rs3761547 gene polymorphism in multiple sclerosis as a male-specific risk factor. Neuromolecular Med. 2018;20(4):537–543. doi: 10.1007/s12017-018-8512-z
- Bush WS, Sawcer SJ, de Jager PL, et al. Evidence for polygenic susceptibility to multiple sclerosis — the shape of things to come. Am J Hum Genet. 2010;86(4):621–625. doi: 10.1016/j.ajhg.2010.02.027
- International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2; Sawcer S, Hellenthal G, Pirinen M, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214–219. doi: 10.1038/nature10251
- Beecham AH, Patsopoulos NA, Xifara DK, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013;45(11):1353–1360. doi: 10.1038/ng.2770
- Lill CM, Luessi F, Alcina A, et al. Genome-wide significant association with seven novel multiple sclerosis risk loci. J Med Genet. 2015;52(12):848–855. doi: 10.1136/jmedgenet-2015-103442
- Wang JH, Pappas D, de Jager PL, et al. Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data. Genome Med. 2011;3(1):3. doi: 10.1186/gm217
- Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene). Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet. 2009;41(7):824–828. doi: 10.1038/ng.396
- International Multiple Sclerosis Genetics Consortium: Patsopoulos NA, Baranzini SE, Santaniello A, et al. The multiple sclerosis genomic map: Role of peripheral immune cells and resident microglia in susceptibility. bioRxiv. 2017. doi: 10.1101/143933
- Lioudyno V, Abdurasulova I, Bisaga G, et al. Single nucleotide polymorphism rs948854 in human galanin gene and multiple sclerosis: a gender-specific risk factor. J Neurosci Res. 2017;95(1–2):644–651. doi: 10.1002/jnr.23887
- Lioudyno V, Abdurasulova I, Tatarinov A, et al. The effect of galanin gene polymorphism RS948854 on the severity of multiple sclerosis course: a significant association with the age of onset. Mult Scler Relat Disord. 2020;37:101439. doi: 10.1016/j.msard.2019.101439
- Lioudyno V, Abdurasulova I, Negoreeva I, et al. Common genetic variant rs2821557 in KCNA3 is linked to a severity of multiple sclerosis. J Neurosci Res. 2021;99(1):200–208. doi: 10.1002/jnr.24596
- Mumford CJ, Wood NW, Kellar-Wood H, et al. The British Isles survey of multiple sclerosis in twins. Neurology. 1994;44(1):11–15. doi: 10.1212/wnl.44.1.11
- Willer CJ, Dyment DA, Risch NJ, et al. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci USA. 2003;100(22):12877–12882. doi: 10.1073/pnas.1932604100
- Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13(1):25–36. doi: 10.1038/nrneurol.2016.187
- Leibowitz U, Antonovsky A, Medalie JM, et al. Epidemiological study of multiple sclerosis in Israel. II. Multiple sclerosis and level of sanitation. J Neurol Neurosurg Psychiatry. 1966;29(1):60–68. doi: 10.1136/jnnp.29.1.60
- Alotaibi S, Kennedy J, Tellier R, et al. Epstein-barr virus in pediatric multiple sclerosis. JAMA. 2004;291(15):1875–1879. doi: 10.1001/jama.291.15.1875
- Munger KL, Levin LI, Hollis BW, et al. Serum 25-Hydroxyvitamin D levels and risk of multiple sclerosis. JAMA. 2006;296(23):2832–2838. doi: 10.1001/jama.296.23.2832
- Spelman T, Gray O, Trojano M, et al. Seasonal variation of relapse rate in multiple sclerosis is latitude dependen. Ann Neurol. 2014;76(6):880–890. doi: 10.1002/ana.24287
- Ascherio A, Munger KL, White R, et al. Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol. 2014;71(3):306–314. doi: 10.1001/jamaneurol.2013.5993
- Farez MF, Fiol MP, Gaitán MI, et al. Sodium intake is associated with increased disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015;86(1):26–31. doi: 10.1136/jnnp-2014-307928
- Bagur MJ, Murcia MA, Jimenez-Monreal AM, et al. Influence of diet in multiple sclerosis: a systematic review. Adv Nutr. 2017;8(3):463–472. doi: 10.3945/an.116.014191
- Hedström AK, Alfredsson L, Olsson T. Environmental factors and their interactions with risk genotypes in MS susceptibility. Curr Opin Neurol. 2016;29(3):293–298. doi: 10.1097/WCO.0000000000000329
- Mohr DC. Stress and multiple sclerosis. J Neurol. 2007;254 Suppl 2:II65–II68. doi: 10.1007/s00415-007-2015-4
- Artemiadis AK, Anagnostouli MC, Alexopoulos EC. Stress as a risk factor for multiple sclerosis onset or relapse: a systematic review. Neuroepidemiology. 2011;36(2):109–120. doi: 10.1159/000323953
- Hawkes CH. Smoking is a risk factor for multiple sclerosis: a meta-analysis. Mult Scler. 2007;13(5):610–615. doi: 10.1177/1352458506073501
- Jafari N, Hintzen RQ. The association between cigarette smoking and multiple sclerosis. J Neurol Sci. 2011;311(1–2):78–85. doi: 10.1016/j.jns.2011.09.008
- Munger KL. Childhood obesity is a risk factor for multiple sclerosis. Mult Scler. 2013;19(13):1800. doi: 10.1177/1352458513507357
- Jahanfar S, Duggan T, Tkachuk S, Tremlett H. Factors associated with onset, relapses or progression in multiple sclerosis: a systematic review. Neurotoxicology. 2017;61:189–212. doi: 10.1016/j.neuro.2016.03.020
- Granieri E, Casetta I, Tola MR, Ferrante P. Multiple sclerosis: infectious hypothesis. Neurol Sci. 2001;22(2):179–185. doi: 10.1007/s100720170021
- Haegert DG. The initiation of multiple sclerosis: a new infectious hypothesis. Med Hypotheses. 2003;60(2):165–170. doi: 10.1016/s0306-9877(02)00349-3
- Challoner PB, Smith KT, Parker JD, et al. Plaque associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci USA. 1995;92(16):7440–7444. doi: 10.1073/pnas.92.16.7440
- Soldan SS, Berti R, Salem N, et al. Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nat Med. 1997;3(12):1394–1397. doi: 10.1038/nm1297-1394
- Ascherio A, Munch M. Epstein–Barr virus and multiple sclerosis. Epidemiology. 2000;11(2):220–224. doi: 10.1097/00001648-2000030000-00023
- Fierz W. Multiple sclerosis: an example of pathogenic viral interaction? Virol J. 2017;14(1):42. doi: 10.1186/s12985-017-0719-3
- Antony JM, DesLauriers AM, Bhat RK, et al. Human endogenous retroviruses and multiple sclerosis: Innocent bystanders or disease determinants? Biochim Biophys Acta. 2011;1812(2):162–176. doi: 10.1016/j.bbadis.2010.07.016
- Bahar M, Ashtari F, Aghaei M, et al. Mycoplasma pneumonia seroposivity in Iranian patients with relapsing-remitting multipl sclerosis: a randomized case-control study. J Pak Med Assoc. 2012;62(3 Suppl 2):S6–8.
- Munger KL, Peeling RW, Hernan MA. Infection with Chlamydia pneumoniae and risk of multiple sclerosis. Epidemiology. 2003;14(2):141–147. doi: 10.1097/01.EDE.0000050699.23957.8E
- Buljevac D, Flach HZ, Hop WC, et al. Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain. 2002;125(Pt 5):952–960. doi: 10.1093/brain/awf098
- Steelman AJ. Infection as an environmental trigger of multiple sclerosis disease exacerbation. Front Immunol. 2015;6:520. doi: 10.3389/fimmu.2015.00520
- Kurtzke JF. A reassessment of the distribution of multiple sclerosis. Part one. Acta Neurol Scand. 1975;51(2):110–136. doi: 10.1111/j.1600-0404.1975.tb01364.x
- Browne P, Chandraratna D, Angood C, et al. Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology. 2014;83(11):1022–1024. doi: 10.1212/WNL.0000000000000768
- Osoegawa M, Kira J, Fukazawa T, et al. Temporal changes and geographical differences in multiple sclerosis phenotypes in Japanese: nationwide survey results over 30 years. Mult Scler. 2009;15(2):159–173. doi: 10.1177/1352458508098372
- Houzen H, Niino M, Hata D, et al. Increasing prevalence and incidence of multiple sclerosis in northern Japan. Mult Scler. 2008;14(7):887–892. doi: 10.1177/1352458508090226
- Jancic J, Nikolic B, Ivancevic N, et al. Multiple sclerosis in pediatrics: current concepts and treatment options. Neurol Ther. 2016;5(2):131–143. doi: 10.1007/s40120-016-0052-6
- Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259–1260. doi: 10.1136/bmj.299.6710.1259
- Fleming J, Fabry Z. The hygiene hypothesis and multiple sclerosis. Ann Neurol. 2007;61(2):85–89. doi: 10.1002/ana.21092
- Krone B, Grange JM. Paradigms in multiple sclerosis: time for a change, time for a unifying concept. Inflammopharmacol. 2011;19(4):187–195. doi: 10.1007/s10787-011-0084-6
- Nielsen TR, Rostgaard K, Nielsen NM, et al. Multiple sclerosis after infectious mononucleosis. Arch Neurol. 2007;64(1):72–75. doi: 10.1001/archneur.64.1.72
- Esposito S, Bonavita S, Sparaco M, et al. The role of diet in multiple sclerosis: a review. Nutr Neurosci. 2018;21(6):377–390. doi: 10.1080/1028415X.2017.1303016
- Kira J, Yamasaki K, Horiuchi I, et al. Changes in the clinical phenotypes of multiple sclerosis during the past 50 years in Japan. J Neurol Sci. 1999;166(1):53–57. doi: 10.1016/s0022-510x(99)00115-x
- Gimeno D, Kivimäki M, Brunner EJ, et al. Associations of C-reactive protein and interleukin-6 with cognitive symptoms of depression: 12-year follow-up of the Whitehall II study. Psychol Med. 2009;39(3):413–423. doi: 10.1017/S0033291708003723
- Berer K, Krishnamoorthy G. Commensal gut flora and brain autoimmunity: a love or hate affair? Acta Neuropathol. 2012;123(5):639–651. doi: 10.1007/s00401-012-0949-9
- Brown J, Quattrochi B, Everett C, et al. Gut commensals, dysbiosis, and immune response imbalance in the pathogenesis of multiple sclerosis. Mult Scler. 2021;27(6):807–811. doi: 10.1177/1352458520928301
- Barcellos LF, Oksenberg JR, Green AJ, et al. Genetic basic for clinical expression in multiple sclerosis. Brain. 2002;125(Pt 1):150–158. doi: 10.1093/brain/awf009
- Imani D, Azimi A, Salehi Z, et al. Association of nod-like receptor protein-3 single nucleotide gene polymorphisms and expression with the susceptibility to relapsing–remitting multiple sclerosis. Int J Immunogenet. 2018;45(6):329–336. doi: 10.1111/iji.12401
- Racke MK, Drew PD. Toll-like receptors in multiple sclerosis. Curr Top Microbiol Immunol. 2009;336:155–168. doi: 10.1007/978-3-642-00549-7_9
- Gharagozloo M, Gris KV, Mahvelati T, et al. NLR-dependent regulation of inflammation in multiple sclerosis. Front Immunol. 2018;8:2012. doi: 10.3389/fimmu.2017.02012
- Maghzi A-H, Etemadifar M, Heshmat-Ghahdarijani K, et al. Cesarean delivery may increase the risk of multiple sclerosis. Mult Scler. 2012;18(4):468–471. doi: 10.1177/1352458511424904
- Nielsen NM, Bager P, Stenager E, et al. Cesarean section and offspring’s risk of multiple sclerosis: a Danish nationwide cohort study. Mult Scler. 2013;19(11):1473–1477. doi: 10.1177/1352458513480010
- Conradi S, Malzahn U, Paul F, et al. Breastfeeding is associated with lower risk for multiple sclerosis. Mult Scler. 2013;19(5):553–558. doi: 10.1177/1352458512459683
- Ragnedda G, Leoni S, Parpinel M, et al. Reduced duration of breastfeeding is associated with a higher risk of multiple sclerosis in both Italian and Norwegian adult males: the EnvIMS study. J Neurol. 2015;262(5):1271–1277. doi: 10.1007/s00415-015-7704
- Kleinewietfeld M, Manzel A, Titze J, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496(7446):518–522. doi: 10.1038/nature11868
- Sedaghat F, Jessri M, Behrooz M, et al. Mediterranean diet adherence and risk of multiple sclerosis: a case-control study. Asia Pac J Clin Nutr. 2016;25(2):377–384. doi: 10.6133/apjcn.2016.25.2.12
- Andeweg SP, Keşmir C, Dutilh BE. Quantifying the impact of human leukocyte antigen on the human gut microbiota. mSphere. 2021;6(4):e00476–21. doi: 10.1128/mSphere.00476-21
- Carvalho FA, Koren O, Goodrich JK, et al. Transient inability to manage Proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe. 2012;12(2):139–152. doi: 10.1016/j.chom.2012.07.004
- Knights D, Silverberg MS, Weersma RK, et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 2014;6(12):107. doi: 10.1186/s13073-014-0107-1
- Wang J, Thingholm LB, Skiecevičienė J, et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet. 2016;48(11):1396–1406. doi: 10.1038/ng.3695
- Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703. doi: 10.1016/j.chom.2015.04.004
- Ma J, Li Z, Zhang W, et al. Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep. 2020;10(1):15792. doi: 10.1038/s41598-020-72635-x
- Mueller S, Saunier K, Hanisch C, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006;72(2):1027–1033. doi: 10.1128/AEM.72.2.1027-1033.2006
- Singh P, Manning SD. Impact of age and sex on the composition and abundance of the intestinal microbiota in individuals with and without enteric infections. Ann Epidemiol. 2016;26(5):380–385. doi: 10.1016/j.annepidem.2016.03.007
- Sinha T, Vich Vila A, Garmaeva S, et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles. Gut Microbes. 2019;10(3):358–366. doi: 10.1080/19490976.2018.1528822
- Koliada A, Moseiko V, Romanenko M, et al. Sex differences in the phylum-level human gut microbiota composition. BMC Microbiol. 2021;21(1):131. doi: 10.1186/s12866-021-02198-y
- Carvalho-Queiroz С, Johansson MA, Persson J-O, et al. Associations between EBV and CMV seropositivity, early exposures, and gut microbiota in a prospective birth cohort: A 10-Year follow-up. Front Pediatr. 2016;4:93. doi: 10.3389/fped.2016.00093
- Hollins SL, Hodgson DM. Stress, microbiota, and immunity. Curr Opin Behav Sci. 2019;28:66–71. doi: 10.1016/j.cobeha.2019.01.015
- De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107(33):14691–14696. doi: 10.1073/pnas.1005963107
- Merra G, Noce A, Marrone G, et al. Influence of mediterranean diet on human gut microbiota. Nutrients. 2021;13(1):7. doi: 10.3390/nu13010007
- Lee SH, Yun Y, Kim SJ, et al. Association between cigarette smoking status and composition of gut microbiota: Population-based cross-sectional study. J Clin Med. 2018;7(9):282. doi: 10.3390/jcm7090282
- Bervoets L, Van Hoorenbeeck K, Kortleven I, et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog. 2013;5(1):10. doi: 10.1186/1757-4749-5-10
- Riva A, Borgo F, Lassandro C, et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ Microbiol. 2017;19(1):95–105. doi: 10.1111/1462-2920.13463
- Bora SA, Kennett MJ, Smith PB, et al. The gut microbiota regulates endocrine vitamin D methabolism through fibroblast growth factor 23. Front Immunol. 2018;9:408. doi: 10.3389/fimmu.2018.00408
- Tabatabaeizadeh SA, Tafazoli N, Ferns GA, et al. Vitamin D, the gut microbiome and inflammatory bowel disease. J Res Med Sci. 2018;23:75. doi: 10.4103/jrms.JRMS_606_17
- Turnbaugh PJ, Ley RE, Hamady M, et al. The human microbiome project. Nature. 2007;449(7164):804–810. doi: 10.1038/nature06244
- Mai V, Draganov PV. Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. World J Gastroenterol. 2009;15(1):81–85. doi: 10.3748/wjg.15.81
- Lankelma JM, Nieuwdorp M, de Vos WM, Wiersinga WJ. The gut microbiota in internal medicine: implications for health and disease. Neth J Med. 2015;73(2):61–68.
- Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–230. doi: 10.1038/nature11550
- McDermott AJ, Huffnagle GB. The microbiome and regulation of mucosal immunity. Immunology. 2014;142(1):24–31. doi: 10.1111/imm.12231
- Bäckhed F, Ley RE, Sonnenburg JL, et al. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–1920. doi: 10.1126/science.1104816
- Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–1638. doi: 10.1126/science.1110591
- Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14(1):20–32. doi: 10.1038/nrmicro3552
- Schippa S, Conte MP. Dysbiotic events in gut microbiota: impact on human health. Nutrients. 2014;6(12):5786–5805. doi: 10.3390/nu6125786
- Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–848. doi: 10.1016/j.cell.2006.02.017
- Bianconi E, Piovesan A, Facchin F, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40(6):463–471. doi: 10.3109/03014460.2013.807878
- Khanna S, Tosh PK. A clinician’s primer on the microbiome in human health and disease. Mayo Clin Proc. 2014;89(1):107–114. doi: 10.1016/j.mayocp.2013.10.011
- Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol. 2013;14(7):676–684. doi: 10.1038/ni.2640
- Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–1359. doi: 10.1126/science.1124234
- Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology. 2014;146(6):1449–1458. doi: 10.1053/j.gastro.2014.01.052
- Hood L. Tackling the microbiome. Science. 2012;336(6086):1209. doi: 10.1126/science.1225475
- Strober W. Inside the microbial and immune labyrinth: gut microbes: friends or fiends? Nat Med. 2010;16(11):1195–1197. doi: 10.1038/nm1110-1195
- Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system and the gut microbiota: friends or foes? Nat Rev Immunol. 2010;10(10):735–744. doi: 10.1038/nri2850
- Benson AK, Kelly SA, Legge R, et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci USA. 2010;107(44):18933–18938. doi: 10.1073/pnas.1007028107
- Xu J, Mahowald M, Ley R, et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 2007;5(7):e156. doi: 10.1371/journal.pbio.0050156
- Quigley EMM. Gut bacteria in health and disease. Gastroenterol Hepatol (NY). 2013;9(9):560–569.
- Macfarlane S, Macfarlane GT. Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl Environ Microbiol. 2006;72(9):6204–6211. doi: 10.1128/AEM.00754-06
- Van der Waaij LA, Harmsen HJ, Madjipour M, et al. Bacterial population analysis of human colon and terminal ileum biopsies with 16S rRNA-based fluorescent probes: commensal bacteria live in suspension and have no direct contact with epithelial cells. Inflamm Bowel Dis. 2005;11(10):865–871. doi: 10.1097/01.mib.0000179212.80778.d3
- Swidsinski A, Loening-Baucke V, Theissig F, et al. Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut. 2007;56(3):343–350. doi: 10.1136/gut.2006.098160
- Carroll IM, Ringel-Kulka T, Keku TO, et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2011;301(5):G799–807. doi: 10.1152/ajpgi.00154.2011
- Atuma C, Strugala V, Allen A, Holm L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol Gastrointest Liver Physiol. 2001;280(5):G922–G929. doi: 10.1152/ajpgi.2001.280.5.G922
- Johansson ME, Phillipson M, Petersson J, et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA. 2008;105(39):15064–15069. doi: 10.1073/pnas.0803124105
- Gordon HA, Pesti L. The gnotobiotic animal as a tool in the study of host microbial relationship. Bacteriol Rev. 1971;35(4):390–429. doi: 10.1128/br.35.4.390-429.1971
- Falk PG, Hooper LV, Midtverd T, Gordon JI. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev. 1998;62(4):1157–1170. doi: 10.1128/MMBR.62.4.1157-1170.1998
- Sjögren YM, Tomicic S, Lundberg A, et al. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin Exp Allergy. 2009;9(12):1842–1851. doi: 10.1111/j.1365-2222.2009.03326.x
- Martin R, Nauta AJ, Ben Amor K, et al. Early life: Gut microbiota and immune development in infancy. Benef Microbes. 2010;1(4):367–382. doi: 10.3920/BM2010.0027
- Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–1463. doi: 10.1016/j.cell.2013.11.024
- Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunoregulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–118. doi: 10.1016/j.cell.2005.05.007
- Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17(5):565–576. doi: 10.1016/j.chom.2015.04.011
- Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158. doi: 10.1126/scitranslmed.3009759
- Hoban AE, Stilling RM, Ryan FJ, et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry. 2016;6(4):e774. doi: 10.1038/tp.2016.42
- Sassone-Corsi M, Raffatellu M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol. 2015;194(9):4081–4087. doi: 10.4049/jimmunol.1403169
- Hansen NW, Sams A. The Microbiotic highway to health — new perspective on food structure, gut microbiota, and host inflammation. Nutrients. 2018;10(11):1590. doi: 10.3390/nu10111590
- Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512–519. doi: 10.1016/S0140-6736(03)12489-0
- Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904. doi: 10.1152/physrev.00045.2009
- Sommer F, Bäckhed F. The gut microbiota — Masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–238. doi: 10.1038/nrmicro2974
- Rojo D, Méndez-García C, Raczkowska BA, et al. Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol Rev. 2017;41(4):453–478. doi: 10.1093/femsre/fuw046
- Cantarel BL, Waubant E, Chehoud C, et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med. 2015;63(5):729–734. doi: 10.1097/JIM.0000000000000192
- Miyake S, Kim S, Suda W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belondind to Clostridia XIVa and IV clusters. PLoS One. 2015;10(9):e0137429. doi: 10.1371/journal.pone.0137429
- Chen J, Chia N, Kalari KR, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep. 2016;6:28484. doi: 10.1038/srep28484
- Jangi S, Gandhi R, Cox LM, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016;7:12015. doi: 10.1038/ncomms12015
- Tremlett H, Fadrosh DW, Faruqi AA, et al. Associations between the gut microbiota and host immune markers in pediatric multiple sclerosis and controls. BMC Neurol. 2016;16(1):182. doi: 10.1186/s12883-016-0703-3
- Berer K, Gerdes LA, Cekanaviciute E, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci USA. 2017;114(40):10719–10724. doi: 10.1073/pnas.1711233114
- Cekanaviciute E, Yoo BB, Runia TF, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA. 2017;114(40):10713–10718. doi: 10.1073/pnas.1711235114
- Cosorich I, Dalla-Costa G, Sorini C, et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci Adv. 2017;3(7):e1700492. doi: 10.1126/sciadv.1700492
- Cekanaviciute E, Pröbstel A-K, Thomann A, et al. Multiple sclerosis-associated changes in the composition and immune functions of spore-forming bacteria. mSystems. 2018;3(6):e00083–18. doi: 10.1128/mSystems.00083-18
- Forbes JD, Chen C-Y, Knox NC, et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseases — does a common dysbiosis exist? Microbiome. 2018;6(1):221. doi: 10.1186/s40168-018-0603-4
- Abdurasulova IN, Matsulevich AV, Tarasova EA, et al. Changes of intestinal microbiome in multiple sclerosis are associated with immune shift and psychoemotional disorders. Medical Academic Journal. 2019;19(1S):51–54. doi: 10.17816/MAJ191S151-54
- Kozhieva M, Naumova N, Alikina T, et al. Primary progressive multiple sclerosis in a Russian cohort: relationship with gut bacterial diversity. BMC Microbiol. 2019;19(1):309. doi: 10.1186/s12866-019-1685-2
- Oezguen N, Yalcinkaya N, Kücükali CI, et al. Microbiota stratification identifies disease-specific alterations in neuro-Behçet’s disease and multiple sclerosis. Clin Exp Rheumatol. 2019;37 Suppl 121(6):58–66.
- Sand IK, Zhu Y, Ntranos A, et al. Disease-modifying therapies alter gut microbial composition in MS. Neurol Neuroimmunol Neuroinflamm. 2019;6(1):e517. doi: 10.1212/NXI.0000000000000517
- Storm-Larsen C, Myhr K-M, Farbu E, et al. Gut microbiota composition during a 12-week intervention with delayed-release dimethyl fumarate in multiple sclerosis — a pilot trial. Mult Scler J Exp Transl Clin. 2019;5(4):2055217319888767. doi: 10.1177/2055217319888767
- Ventura RE, Iizumi1 T, Battaglia T, et al. Gut microbiome of treatment-naïve MS patients of different ethnicities early in disease course. Sci Rep. 2019;9(1):16396. doi: 10.1038/s41598-019-52894-z
- Zeng Q, Gong J, Liu X, et al. Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis. Neurochem Int. 2019;129:104468. doi: 10.1016/j.neuint.2019.104468
- Castillo-Álvarez F, Pérez-Matute P, Oteo JA, Marzo-Sola ME. The influence of interferon β-1b on gut microbiota composition in patients with multiple sclerosis. Neurologia (Engl Ed). 2021;36(7):495–503. doi: 10.1016/j.nrleng.2020.05.006
- Kishikawa T, Ogawa K, Motooka D, et al. A Metagenome-wide association study of gut microbiome in patients with multiple sclerosis revealed novel disease pathology. Front Cell Infect Microbiol. 2020;10:585973. doi: 10.3389/fcimb.2020.585973
- Ling Z, Cheng Y, Yan X, et al. Alterations of the fecal microbiota in Chinese patients with multiple sclerosis. Front Immunol. 2020;11:590783. doi: 10.3389/fimmu.2020.590783
- Reynders T, Devolder L, Valles-Colomer M, et al. Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes. Ann Clin Transl Neurol. 2020;7(4):406–419. doi: 10.1002/acn3.51004
- Takewaki D, Suda W, Sato W, et al. Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis. PNAS. 2020;117(36):22402–22412. doi: 10.1073/pnas.2011703117
- Ní Choileáin S, Kleinewietfeld M, Raddassi K, et al. CXCR3+ T cells in multiple sclerosis correlate with reduced diversity of the gut microbiota. J Translat Autoimmun. 2020;3:100032. doi: 10.1016/j.jtauto.2019.100032
- Cox LM, Maghzi AH, Liu S, et al. The gut microbiome in progressive multiple sclerosis. Ann Neurol. 2021;89(6):1195–1211. doi: 10.1002/ana.26084
- Galluzzo P, Capri FC, Vecchioni L, et al. Comparison of the intestinal microbiome of Italian patients with multiple sclerosis and their household relatives. Life (Basel). 2021;11(7):620. doi: 10.3390/life11070620
- Pellizoni FP, Leite AZ, de Campos Rodrigues N, et al. Detection of dysbiosis and increased intestinal permeability in Brazilian patients with relapsing-remitting multiple sclerosis. Int J Environ Res Public Health. 2021;18(9):4621. doi: 10.3390/ijerph18094621
- Tremlett H, Zhu F, Arnold D, et al. The gut microbiota in pediatric multiple sclerosis and demyelinating syndromes. Ann Clin Transl Neurol. 2021;8(12):2252–2269. doi: 10.1002/acn3.51476
- Yadav M, Ali S, Shrode RL, et al. Multiple sclerosis patients have an altered gut mycobiome and increased fungal to bacterial richness. bioRxiv. 2022;17(4):e0264556. doi: 10.1101/2021.08.30.458212
- Vallino A, Dos Santos A, Mathe CV, et al. Gut bacteria Akkermansia elicit a specific IgG response in CSF of patients with MS. Neurol Neuroimmunol Neuroinflamm. 2020;7(3):e688. doi: 10.1212/NXI.0000000000000688
- Hirano A, Umeno J, Okamoto Y, et al. Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis. J Gastroenterol Hepatol. 2018;33(9):1590–1597. doi: 10.1111/jgh.14129
- Rumah KR, Linden J, Fischetti VA, Vartanian T. Isolation of clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS One. 2013;8(10):e76359. doi: 10.1371/journal.pone.0076359
- Abdurasulova IN, Tarasova EA, Ermolenko EI, et al. Multiple sclerosis is associated with altered quantitative and qualitative composition of intestinal microbiota. Medical Academic Journal. 2015;15(3):55–67. (In Russ.)
- Mete A, Garcia J, Ortega J, et al. Brain lesions associated with clostridium perfringens type D epsilon toxin in a Holstein heifer calf. Vet Pathol. 2013;50(5):765–768. doi: 10.1177/0300985813476058
- Dorca-Arévalo J, Soler-Jover A, Gibert M, et al. Binding of epsilon-toxin from Clostridium perfringens in the nervous system. Vet Microbiol. 2008;131:14–25. doi: 10.1371/journal.pone.0102417
- Lonchamp E, Dupont J-L, Wioland L, et al. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release. PLoS One. 2010;5(9):e13046. doi: 10.1371/journal.pone.0013046
- Finnie JW, Blumbergs PC, Manavis J. Neuronal damage produced in rat brains by Clostridium perfringens type D epsilon toxin. J Comp Pathol. 1999;120(4):415–420. doi: 10.1053/jcpa.1998.0289
- Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–227. doi: 10.1038/nature11053
- Abdurasulova IN, Tarasova EA, Nikiforova IG, et al. The intestinal microbiota composition in patients with multiple sclerosis receiving different disease-modifying therapies (DMT). Korsakov Journal of Neurology and Psychiatry. 2018;118(8–2):62–69. (In Russ.). doi: 10.17116/jnevro201811808262
- Tarasova EA, Lioudyno VI, Matsulevich AV, et al. Features of the intestinal microbiota composition in multiple sclerosis patients receiving oral disease-modifying therapy. Medical Academic Journal. 2021;21(4):47–56. doi: 10.17816/MAJ88595
- Buscarinu MC, Fornasiero A, Romano S, et al. The contribution of gut barrier changes to multiple sclerosis pathophysiology. Front Immunol. 2019;10:1916. doi: 10.3389/fimmu.2019.01916
- Hermann-Bank ML, Skovgaard K, Stockmarr A, et al. The Gut Microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity. BMC Genomics. 2013;14:788. doi: 10.1186/1471-2164-14-788
- Bang S, Yoo DA, Kim S-J, et al. Establishment and evaluation of prediction model for multiple disease classification based on gut microbial data. Sci Rep. 2019;9(1):10189. doi: 10.1038/s41598-019-46249-x
- Gold R, Linington C, Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain. 2006;129(Pt 8):1953–1971. doi: 10.1093/brain/awl075
- Ben-Nun A, Kaushansky N, Kawakami N, et al. From classic to spontaneous and humanized models of multiple sclerosis: Impact on understanding pathogenesis and drug development. J Autoimmun. 2014;54:33–50. doi: 10.1016/j.jaut.2014.06.004
- Krishnamoorthy G, Lassmann H, Wekerle H, Holz A. Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest. 2006;116(9):2385–2392. doi: 10.1172/JCI28330
- Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol. 2009;183(10):6041–6050. doi: 10.4049/jimmunol.0900747
- Goverman J, Woods A, Larson L, et al. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell. 1993;72(4):551–560. doi: 10.1016/0092-8674(93)90074-z
- Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479(7374):538–541. doi: 10.1038/nature10554
- Ivanov II, Frutos Rde L, Manel N, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4(4):337–349. doi: 10.1016/j.chom.2008.09.009
- Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–498. doi: 10.1016/j.cell.2009.09.033
- Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responces to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2011;108 Suppl 1(Suppl 1):4615–4622. doi: 10.1073/pnas.1000082107
- Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–787. doi: 10.1016/j.cell.2008.05.009
- Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA. 2010;107(27):12204–12209. doi: 10.1073/pnas.0909122107
- Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–323. doi: 10.1038/nri2515
- Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–1270. doi: 10.1016/j.cell.2012.01.035
- Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne). 2020;11:25. doi: 10.3389/fendo.2020.00025
- Gandy K, Zhang J, Nagarkatti P, Nagarkatti M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models. Sci Rep. 2019;9(1):6923. doi: 10.1038/s41598-019-43356-7
- Boyko AN, Favorova OO, Kulakova OG, Gusev EI. Epidemiology and etiology of multiple sclerosis. In: Multiple sclerosis. Ed. by E.I. Gusev, I.A. Zavalishin, A.N. Boyko. Moscow: Real Time; 2011. (In Russ.)
Supplementary files
