Morphofunctional alterations of the hypothalamic neurons activity during sleep-wake cycle regulation disturbances after experimental traumatic brain injury

Cover Page

Cite item

Full Text

Abstract

Relevance. The study of sleep disorders mechanisms after traumatic brain injury is complicated and poorly understood. Traumatic damage to the structures that are responsible for the sleep-wake cycle regulation is a common cause of sleep disorders after traumatic brain injury. The number of hypothalamic neurotransmitter systems, which are involved in the sleep-wake cycle regulation, could change its functional activity after trauma that suggests their key role in the development of disturbances of this process.

The aim of the study was to assess the morphological alterations of the hypothalamus neurons that is involved in the regulation of sleep and wakefulness after traumatic brain injury in an experiment.

Methods. For a combined analysis of posttraumatic disturbances of the sleep-wake cycle and morphofunctional changes in the neurotransmitter systems which are involved in the regulation of the sleep-wake cycle, we used a polysomnography in rats during a month and then an immunohistochemical method for estimating the quantify the orexin A, melanin-concentrating hormone, histamine and tyrosine hydroxylase.

Results. The number of histamine-containing cells in the tuberomammillary nuclei of the hypothalamus is obviously decreased after traumatic brain injury in animals. This alteration of the degree of immunoreactivity of histamine-containing cells after traumatic brain injury correlated with sleep duration changes in animals. The number of noradrenergic and orexinergic neurons was compare with control animal group.

Conclusion. These results suggest that a change in the functional activity of histamine-containing neurons after traumatic brain injury may be the cause of post-traumatic sleep and wakefulness disorders. Our results may lead to a creating of a new approach for a therapy for posttraumatic sleep-wake disturbances.

About the authors

Yuri V. Gavrilov

Institute of Experimental Medicine

Email: yury-doctor@mail.ru
ORCID iD: 0000-0003-1409-7686
SPIN-code: 7358-2649

MD, Senior Researcher, Department of General Pathology and Pathological Physiology

Russian Federation, Saint Petersburg

Kristina Z. Derevtsova

Institute of Experimental Medicine

Author for correspondence.
Email: derevtcova19@ya.ru
ORCID iD: 0000-0001-9855-4519
SPIN-code: 5397-7357

PhD, Senior Researcher, Department of General Pathology and Pathological Physiology

Russian Federation, Saint Petersburg

Elena A. Korneva

Institute of Experimental Medicine; Saint Petersburg State University

Email: korneva_helen@mail.ru
ORCID iD: 0000-0002-4999-5913
SPIN-code: 8777-2879

Doctor of Medical Science, Academician of the Russian Academy of Medical Sciences, Chief Senior Researcher of the Department of General Pathology and Pathological Physiology; Professor of the Pathophysiology Department

Russian Federation, Saint Petersburg

References

  1. Viola-Saltzman M, Watson NF. Traumatic brain injury and sleep disorders. Neurol Clin. 2012;30(4):1299-1312. https://doi.org/10.1016/j.ncl.2012.08.008.
  2. Rao V, Spiro J, Vaishnavi S, et al. Prevalence and types of sleep disturbances acutely after traumatic brain injury. Brain Inj. 2008;22(5):381-386. https://doi.org/10.1080/ 02699050801935260.
  3. Rajaratnam SW, Cohen DA, Rogers NL. Melatonin and melatonin analogues. Sleep Med Clin. 2009;4(2):179-193. https://doi.org/10.1016/j.jsmc.2009.02.007.
  4. Shekleton JA, Parcell DL, Redman JR, et al. Sleep disturbance and melatonin levels following traumatic brain injury. Neurology. 2010;74(21):1732-1738. https://doi.org/10.1212/WNL.0b013e3181e0438b.
  5. Clinchot DM, Bogner J, Mysiw WJ, et al. Defining sleep disturbance after brain injury. Am J Phys Med Rehabil. 1998;77(4):291-295. https://doi.org/10.1097/00002060-199807000-00006.
  6. Castriotta RJ, Murthy JN. Sleep disorders in patients with traumatic brain injury: a review. CNS Drugs. 2011;25(3):175-185. https://doi.org/10.2165/11584870-000000000-00000.
  7. Kaufman Y, Tzischinsky O, Epstein R, et al. Long-term sleep disturbances in adolescents after minor head injury. Pediatr Neurol. 2001;24(2):129-134. https://doi.org/10.1016/s0887-8994(00)00254-x.
  8. Tobe EH, Schneider JS, Mrozik T, Lidsky TI. Persisting insomnia following traumatic brain injury. J Neuropsychiatry Clin Neurosci. 1999;11(4):504-506. https://doi.org/10.1176/jnp.11.4.504.
  9. Ayalon L, Borodkin K, Dishon L, et al. Circadian rhythm sleep disorders following mild traumatic brain injury. Neurology. 2007;68(14):1136-1140. https://doi.org/10.1212/01.wnl.0000258672.52836.30.
  10. Valko PO, Gavrilov YV, Yamamoto M, et al. Damage to histaminergic tuberomammillary neurons and other hypothalamic neurons with traumatic brain injury. Ann Neurol. 2015;77(1):177-182. https://doi.org/10.1002/ana. 24298.
  11. Harada M, Minami R, Hattori E, et al. Sleep in brain-damaged patients. An all night sleep study of 105 cases. Kumamoto Med J. 1976;29(3):110-127. https://doi.org/10.1093/sleep/11.2.139.
  12. George B, Landau-Ferey J, Benoit O, et al. [Night sleep disorders during recovery of severe head injuries (author’s transl). (In French)]. Neurochirurgie. 1981;27(1):35-38.
  13. Willie JT, Lim MM, Bennett RE, et al. Controlled cortical impact traumatic brain injury acutely disrupts wakefulness and extracellular orexin dynamics as determined by intracerebral microdialysis in mice. J Neurotrauma. 2012;29(10):1908-1921. https://doi.org/10.1089/neu.2012.2404.
  14. Lim MM, Elkind J, Xiong G, et al. Dietary therapy mitigates persistent wake deficits caused by mild traumatic brain injury. Sci Transl Med. 2013;5(215):215ra173. https://doi.org/10.1126/scitranslmed.3007092.
  15. Büchele F, Morawska MM, Schreglmann SR, et al. Novel rat model of weight drop-induced closed diffuse traumatic brain injury compatible with electrophysiological recordings of vigilance states. J Neurotrauma. 2016;33(13):1171-1180. https://doi.org/10.1089/neu.2015.4001.
  16. Imbach LL, Valko PO, Li T, et al. Increased sleep need and daytime sleepiness 6 months after traumatic brain injury: a prospective controlled clinical trial. Brain. 2015;138(Pt 3):726-735. https://doi.org/10.1093/brain/awu391.
  17. Гаврилов Ю.В., Деревцова К.З., Корнева Е.А. Функциональные изменения цикла «сон – бодрствование» после черепно-мозговой травмы в эксперименте // Патогенез. – 2019. – Т. 17. – № 1. – С. 50–56. [Gavrilov YuV, Derevtsova KZ, Korneva EA. Functional changes in the sleep-wake cycle after experimental traumatic brain injury. Pathogenesis. 2019;17(1):50-56. (In Russ.)]. https://doi.org/10.25557/2310-0435.2019.01.50-56.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Gavrilov Y.V., Derevtsova K.Z., Korneva E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».