VON WILLEBRAND FACTOR OF ENDOTHELIOCYTES OF BLOOD VESSELS AND ITS USE IN THE COURSE OF IMMUNOMORPHOLOGYCAL RESEARCHES


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The most frequent problem of the surgical treatment of the phlebeurysm is the repatency of thrombuses. The main cell population that prevents the formation of thrombuses and contributes to their repatency is presented by endotheliocytes of intima of vessels. One of important directions of the contemporary immunomorphological angiology is determination of markers of the functional activity of the endothelium that has the high predictive validity in relation to the prediction of results of the surgical treatment. The possible expectant to be such a marker is the protein that is synthesized with endotheliocytes, it is called von Willebrand factor. In the present article data are generalized and analyzed that are available in the literature worldwide concerning the molecular organization and functions of von Willebrand factor, the comparison of different morphological ways of its detection in situ has been carried out. Based on the overview of literature and own data a conclusion has been drawn that the method of the confocal laser microscopy makes possible in course of the immunocytochemical marking of the von Willebrand factor to study its distribution in the cytoplasm of separate endotheliocytes as well as in the subendothelial area of the wall of the blood vessel. Data on the intracellular and extracellular accumulation of the von Willebrand factor are necessary for the correct evaluation of the functional state of the endothelial lepidic tissue.

About the authors

D E Korzhevskii

Institute of Experimental Medicine

O V Kirik

Institute of Experimental Medicine

E G Sukhorukova

Institute of Experimental Medicine

O S Alekseeva

Institute of Experimental Medicine

E V Shaydakov

Institute of Experimental Medicine

References

  1. Бойцов С.А., Самородская И.В. Смертность и потерянные годы жизни в результате преждевременной смертности от болезней системы кровообращения // Кардиоваскулярная терапия и профилактика. 2014. Т. 13, № 2. С. 4-11. [Boytsov S.A., Samorodskaya I.V. Kardiovasculyarnaya terapiya i profilaktika (Cardiovascular Therapy and Prophilaxis), 2014, vol. 13, No 2, рр. 4-11.].
  2. Кириенко А.И., Золотухин И.А., Юмин С.М., Селиверстов Е.И. Варикозная болезнь нижних конечностей у женщин и мужчин: данные проспективного обсервационного исследования СПЕКТР // Ангиология и сосудистая хирургия. 2012. Т. 18, № 3. С. 64-67. [Kirienko A.I., Zolotokhin I.A., Yumin S.M., Seliverstov E.I., Angiologiya i sosudistaya khirurgiya (Angiology and Vascular Surgery), 2012, vol. 18, No 3, рр. 64-67.].
  3. Dalsing M.C. Chronic deep venous insufficiency: what is new? // International Angiology. 2007. Vol. 26, No 2. P. 43-44.
  4. Шайдаков Е.В., Илюхин Е.А., Петухов А.В. Радиочастотная облитерация с применением катетеров в лечении хронических заболеваний вен // Hовости хирургии. 2011. Т. 19, № 6. C. 129-133. [Shaydakov E.V., Ilyukhin E.A., Petukhov A.V., Novosti khirurgii (Surgery News), 2011, vol. 19, No 6, рр. 129-133.].
  5. Zerweck C., von Hodenberg E., Knittel M., Zeller T., Schwarz T. Endovenous laser ablation of varicose perforating veins with the 1470 nm diode laser using the radial fibre slim // Phlebology. 2014. Vol. 29, № 1. P. 30-36.
  6. Giblin J.P., Hewlett L.J., Hannah M.J. Basal secretion of von Willebrand factor from human endothelial cells // Blood. 2008. Vol. 112, No 4. P. 957-964.
  7. Sadler J.E. Biochemistry and genetics of von Willebrand factor // Annu. Rev. Biochem. 1998. Vol. 67. P. 395-424.
  8. Zhang J.L., Huang Y., Qiu L.Y., Nickel J., Sebald W. Von Willebrand factor type C-domain-containing proteins regulate bone morphogenic protein signaling through different recognition mechanisms // J. Biol. Chem. 2007. Vol. 282, No 27. P. 20002-20014.
  9. Veit G., Kobbe B., Keene D.R., Paulsson M., Koch M., Wagener R. Collagen XXVIII, a novel von Willebrand factor A domain-containing protein with many imperfections in the collagenous domain // J. Biol. Chem. 2006. Vol. 281, No 6. P. 3494-3504.
  10. Sporn L.A., Marder V.J., Wagner D.D. Inducible secretion of large, biologically potent von Willebrand factor multimers // Cell. 1986. Vol. 46, № 2. P. 185-190.
  11. Hannah M.J., Williams R., Kaur J., Hewlett L.J. Biogenesis of Weibel-Palade bodies // Semin. Cell Dev. Biol. 2002. Vol. 13, No 4. P. 313-324.
  12. Wagner D.D., Olmsted J.B., Marder V.J. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells // J. Cell Biol. 1982. Vol. 95, No 1. P. 355-360.
  13. Гурина О.Ю., Гурин Я.В., Павлович Е.Р., Цыпленкова В.Г. Изучение специфических телец Вейбеля-Паладе в эндотелиоцитах при репаративном ангиогенезе // Морфология XXI века. Выпуск 2. Сборник научных трудов. К 80-летию со дня рождения профессора А.А. Клишова / под ред. Р.К. Данилова, С.В. Костюкевича, И.А. Одинцовой. СПб.: ДЕАН, 2010. С. 104-107. [Gurina O.Yu., Gurin Ya.V., Pavlovich E.R., Tsyplenkova V.G., Morfologiia XXI veka. Vypusk 2. Sbornik nauchnykh trudov. K 80-letiyu so dnya rozhdeniya professora A.A. Klishova (Morphology of the XXI century. Issue 2. Collection of scientific papers. Dedicated to 80th anniversary of the Professor A.A. Klishov), R.K. Danilov, S.V. Kostyukevich, I.A. Odintsova, eds. St. Petersburg: DEAN, 2010, рp. 104-107.].
  14. Cramer E.M., Meyer D., le Menn R., Breton-Gorius J. Eccentric localization of von Willebrand factor in an internal structure of platelet alpha-granule resembling that of Weibel-Palade bodies // Blood. 1985. Vol. 66, № 3. P. 710-713.
  15. Castaman G., Giacomelli S.H., Jacobi P.M., Obser T., Budde U., Rodeghiero F., Schneppenheim R., Haberichter S.L. Reduced von Willebrand factor secretion is associated with loss of Weibel-Palade body formation // J. Thromb. Haemost. 2012. Vol. 10, № 5. P. 951-958.
  16. Fowler W.E., Fretto L.J., Hamilton K.K., Erickson H.P., McKee P.A. Substructure of human von Willebrand factor // J. Clin. Invest. 1985. Vol. 76, No 4. P. 1491-1500.
  17. . Schooten van C.J., Shahbazi S., Groot E., Oortwijn B.D., Berg van der H.M., Devis C.V., Lenting P.J. Macrophages contribute to the cellular uptake of von Willebrand factor and factor VIII in vivo // Blood. 2008. Vol. 112, No 5. P. 1704-1712.
  18. Wagner D.D., Bonfanti R. Von Willebrand factor and the endothelium // Mayo Clin Proc. 1991. Vol. 66, No 6. P. 621-627.
  19. Wu X.X., Gordon R.E., Glanville R.W., Kuo H.J., Uson R.R., Rand J.H. Morphological relationships of von Willebrand factor, type VI collagen, and fibrillin in human vascular subendothelium // Am. J. Pathol. 1996. Vol. 149, No 1. P. 283-291.
  20. Randi A.M. Endothelial dysfunction in von Willebrand disease: angiogenesis and angiodysplasia // Thromb. Res. 2016. Vol. 141, Suppl. 2. Р. 55-58.
  21. Weibel E., Palade G. New cytoplasmic components in arterial endothelia // J. Cell Biol. 1964. Vol. 23. P. 101-112.
  22. Palade G.E. Blood capillaries of the heart and other organs // Circulation. 1961. Vol. 24. P. 368-388.
  23. Reidy M.A., Chopek M., Chao S., McDonald T., Schwartz S.M. Injury induced increase of von Willebrand factor in rat endothelial cells // Am. J. Pathol. 1989. Vol. 134, No 2. P. 194-210.
  24. Ribes J.A., Francis C.W., Wagner D.D. Fibrin induces realease of von Willebrand factor from endothelial cels // J. Clin. Invest. 1987. Vol. 79, No 1. P. 117-123.
  25. Wagner D.D. Cell biology of von Willebrand factor // 1990. Annu. Rev. Cell Biol. Vol. 6. P. 217-46.
  26. Lopes da Silva M., Cutler D.F. Von Willebrand factor multimerization and the polarity of secretory pathways in endothelial cells // Blood. 2016. Vol. 128, No 2. P. 277-285.
  27. Коржевский Д.Э., Отеллин В.А., Неокесарийский А.А, Старорусская А.Н., Павлова Н.Г. Организация и цитохимические особенности барьерных структур плаценты человека // Морфология. 2006. Т. 129, № 3. С. 63-64. [Korzhevskii D.E., Otellin V.A., Neokesariiskii A.A., Starorusskaya A.N., Pavlova N.G., Morfologiia (Morphology), 2006, vol. 129, No 3, рр. 63-64.].
  28. Сырцова М.А., Колос Е.А., Снегова В.А, Гусельникова В.В. Применение флуоресцентных красителей для окраски ядер клеток в фиксированном биологическом материале // Мед. акад. журн. 2014. Т. 14, № 2. С. 34-39. [Syrczova M.A., Kolos E.A., Snegova V.A., Guselnikova V.V., Med. Akad. Zhurn. (Med. Acad. J.), 2014, vol. 14, No 2, рр. 34-39.].
  29. Trotman W.E., Taatjes D.J., Bovill E.G. Multifluorescence confocal microscopy: application for a quantitative analysis of hemostatic proteins in human venous valves // Methods Mol. Biol. 2013. Vol. 931. P. 85-95.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Korzhevskii D.E., Kirik O.V., Sukhorukova E.G., Alekseeva O.S., Shaydakov E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».