Молекулярные механизмы лекарственной устойчивости глиальных опухолей мозга. Часть 2. Пролиферация, ангиогенез, метастазирование и рецидивирование
- Авторы: Чернов А.Н.1, Галимова Э.С.1,2, Шамова О.В.1,3
-
Учреждения:
- Институт экспериментальной медицины
- Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН
- Санкт-Петербургский государственный университет
- Выпуск: Том 22, № 1 (2022)
- Страницы: 89-117
- Раздел: Аналитический обзор
- URL: https://bakhtiniada.ru/MAJ/article/view/83594
- DOI: https://doi.org/10.17816/MAJ83594
- ID: 83594
Цитировать
Аннотация
Главная причина низкой эффективности лечения глиобластомы — ее устойчивость к терапевтическим процедурам. Развитие множественной лекарственной устойчивости происходит в результате отбора опухолевых клонов во время терапии. Резистентные к радиотерапии или химиотерапии клоны клеток могут пролиферировать, приводя к росту опухоли, в которой образуется собственная сеть сосудов (ангиогенез), способствующая миграции и инвазии клеток, и, как следствие, появлению метастазов и рецидивов глиобластомы. В обзоре рассмотрена взаимосвязь на молекулярном уровне множественной лекарственной устойчивости с пролиферацией, ангиогенезом, миграцией, метастазированием и образованием рецидивов глиобластомы с акцентом на выявлении новых мишеней среди белков, микроРНК, киназ сигнальной трансдукции, транскрипционных факторов, генов-супрессоров и онкогенов.
Полный текст
Открыть статью на сайте журналаОб авторах
Александр Николаевич Чернов
Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: al.chernov@mail.ru
ORCID iD: 0000-0003-2464-7370
канд. биол. наук, научный сотрудник отдела общей патологии и патологической физиологии
Россия, Санкт-ПетербургЭльвира Сафуановна Галимова
Институт экспериментальной медицины; Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН
Email: elya-4@yandex.ru
ORCID iD: 0000-0002-8773-0932
Scopus Author ID: 24331659400
канд. биол. наук, старший научный сотрудник; старший научный сотрудник
Россия, Санкт-Петербург; Санкт-ПетербургОльга Валерьевна Шамова
Институт экспериментальной медицины; Санкт-Петербургский государственный университет
Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801
Scopus Author ID: 6603643804
ResearcherId: F-6743-2013
д-р биол. наук, доцент, член-корреспондент РАН, заведующий отделом общей патологии и патологической физиологии; профессор кафедры биохимии
Россия, Санкт-Петербург; Санкт-ПетербургСписок литературы
- Griffin M., Khan R., Basu S. et al. Ion channels as therapeutic targets in high grade gliomas // Cancers (Basel). 2020. Vol. 12, No. 10. P. 3068. doi: 10.3390/cancers12103068
- Sottoriva A., Spiteri I., Piccirillo S.G. et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics // Proc. Natl. Acad. Sci. USA. 2013. Vol. 110, No. 10. P. 4009–4014. doi: 10.1073/pnas.1219747110
- Verhaak R.G.W., Hoadley K.A., Purdom E. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1 // Cancer Cell. 2010. Vol. 17. P. 98–110. doi: 10.1016/j.ccr.2009.12.020
- Wang Z., Zhang H., Xu S. et al. The adaptive transition of glioblastoma stem cells and its implications on treatments // Signal Transduc. Target. Ther. 2021. Vol. 6, No. 1. P. 124. doi: 10.1038/s41392-021-00491-w
- Mesrati M.H., Behrooz A.B., Abuhamad A.Y., Syahir A. Understanding glioblastoma biomarkers: knocking a mountain with a hammer // Cells. 2020. Vol. 9, No. 5. P. 1236. doi: 10.3390/cells9051236
- Suvà M.L., Tirosh I. The Glioma stem cell model in the era of single-cell genomics // Cancer Cell. 2020. Vol. 37, No. 5. P. 630–636. doi: 10.1016/j.ccell.2020.04.001
- Park J.C., Chang I.B., Ahn J.H. et al. Nerve growth factor stimulates glioblastoma proliferation through notch1 receptor signaling // J. Korean Neurosurg. Soc. 2018. Vol. 61, No. 4. P. 441–449. doi: 10.3340/jkns.2017.0219
- Watanabe T., Katayama Y., Kimura S., Yoshino A. Control of proliferation and survival of C6 glioma cells with modification of the nerve growth factor autocrine system // J. Neurooncol. 1999. Vol. 41, No. 2. P. 121–128. doi: 10.1023/a:1006127624487
- Garofalo S., Porzia A., Mainiero F. et al. Environmental stimuli shape microglial plasticity in glioma // Elife. 2017. Vol. 6. P. e33415. doi: 10.7554/eLife.33415
- Xiong J., Zhou L., Yang M. et al. ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro // Neuro. Oncol. 2013. Vol. 15, No. 8. P. 990–1007. doi: 10.1093/neuonc/not039
- Venkatesh H.S., Johung T.B., Caretti V. et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion // Cell. 2015. Vol. 161. P. 803–816. doi: 10.1016/j.cell.2015.04.012
- Venkatesh H.S., Morishita W., Geraghty A.C. et al. Electrical and synaptic integration of glioma into neural circuits // Nature. 2019. Vol. 573. P. 539–545. doi: 10.1038/s41586-019-1563-y
- Taylor K.R., Barron T., Zhang H. et al. Glioma synapses recruit mechanisms of adaptive plasticity // BioRxiv. 2021. doi: 10.1101/2021.11.04.467325
- Wang Y., Liu Y.Y., Chen M.B. et al. Neuronal-driven glioma growth requires Gαi1 and Gαi3 // Theranostics. 2021. Vol. 11, No. 17. P. 8535–8549. doi: 10.7150/thno.61452
- Lawn S., Krishna N., Pisklakova A. et al. Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells // J. Biol. Chem. 2015. Vol. 290, No. 6. P. 3814–3824. doi: 10.1074/jbc.M114.599373
- Wang T.-C., Luo S.-J., Chang S.-F. Bone morphogenetic protein 7 effect on human glioblastoma cell transmigration and migration // Life (Basel). 2021. Vol. 11, No. 7. P. 708. doi: 10.3390/life11070708
- Valter M.M., Wiestler O.D., Pietsche T. Differential control of VEGF synthesis and secretion in human glioma cells by IL-1 and EGF // Int. J. Dev. Neurosci. 1999. Vol. 17, No. 5–6. P. 565–577. doi: 10.1016/s0736-5748(99)00048-9
- Krcek R., Matschke V., Theis V. et al. Vascular endothelial growth factor, irradiation, and axitinib have diverse effects on motility and proliferation of glioblastoma multiforme cells // Front. Oncol. 2017. Vol. 7. P. 182. doi: 10.3389/fonc.2017.00182
- Audero E., Cascone I., Zanon I. et al. Expression of angiopoietin-1 in human glioblastomas regulates tumor-induced angiogenesis: in vivo and in vitro studies // Arterioscler. Thromb. Vasc. Biol. 2001. Vol. 21, No. 4. P. 536–541. doi: 10.1161/01.atv.21.4.536
- Hu B., Guo P., Fang Q. et al. Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2 // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100, No. 15. P. 8904–8909. doi: 10.1073/pnas.1533394100
- Hu B., Jarzynka M.J., Guo P. et al. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway // Cancer Res. 2006. Vol. 66, No. 2. P. 775–783. doi: 10.1158/0008-5472.CAN-05-1149
- Brunckhorst M.K., Wang H., Lu R., Yu Q. Angiopoietin-4 Promotes Glioblastoma Progression by Enhancing Tumor Cell Viability and Angiogenesis // Cancer Res. 2010. Vol. 70, No. 18. P. 7283–7293. doi: 10.1158/0008-5472.CAN-09-4125
- Chen X.-C., Wei X.-T., Guan J.-H. et al. EGF stimulates glioblastoma metastasis by induction of matrix metalloproteinase-9 in an EGFR-dependent mechanism // Oncotarget. 2017. Vol. 8, No. 39. P. 65969–65982. doi: 10.18632/oncotarget.19622
- Pudełek M., Król K., Catapano J. et al. Epidermal Growth Factor (EGF) augments the invasive potential of human glioblastoma multiforme cells via the activation of collaborative EGFR/ROS-dependent signaling // Int. J. Mol. Sci. 2020. Vol. 21, No. 10. P. 3605. doi: 10.3390/ijms21103605
- An Z., Aksoy O., Zheng T. et al. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies // Oncogene. 2018. Vol. 37. P. 1561–1575. doi: 10.1038/s41388-017-0045-7
- Garnett J., Chumbalkar V., Vaillant B. et al. Regulation of HGF expression by DeltaEGFR-mediated c-Met activation in glioblastoma cells // Neoplasia. 2013. Vol. 15, No. 1. P. 73–84. doi: 10.1593/neo.121536
- Jimenez-Pascual A., Siebzehnrubl F.A. Fibroblast growth factor receptor functions in glioblastoma // Cells. 2019. Vol. 8, No. 7. P. 715. doi: 10.3390/cells8070715
- Jimenez-Pascual A., Mitchell K., Siebzehnrubl F.A., Lathia J.D. FGF2: a novel druggable target for glioblastoma? // Expert. Opin. Ther. Targets. 2020. Vol. 24, No. 4. P. 311–318. doi: 10.1080/14728222.2020.1736558
- Tiong K.H., Mah L.Y., Leong C.O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers // Apoptosis. 2013. Vol. 18, No. 12. P. 1447–1468. doi: 10.1007/s10495-013-0886-7
- Tirrò E., Massimino M., Romano C. et al. Prognostic and therapeutic roles of the insulin growth factor system in glioblastoma // Front. Oncol. 2021. Vol. 10. P. 612385. doi: 10.3389/fonc.2020.612385
- Maris C., D’Haene N., Trepant A.L. et al. IGF-IR: a new prognostic biomarker for human glioblastoma // Br. J. Cancer. 2015. Vol. 113, No. 5. P. 729–737. doi: 10.1038/bjc.2015.242
- Simpson A.D., Soo Y.W.J., Rieunier G. et al. Type 1 IGF receptor associates with adverse outcome and cellular radioresistance in paediatric high-grade glioma // Br. J. Cancer. 2020. Vol. 122, No. 5. P. 624–629. doi: 10.1038/s41416-019-0677-1
- Cruickshanks N., Zhang Y., Yuan F. et al. Role and therapeutic targeting of the HGF/MET pathway in glioblastoma // Cancers (Basel). 2017. Vol. 9, No. 7. P. 87. doi: 10.3390/cancers9070087
- Navis A.C., van Lith S.A., van Duijnhoven S.M. et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein // Acta Neuropathol. 2015. Vol. 130. P. 131–144. doi: 10.1007/s00401-015-1420-5
- Cantanhede I.G., de Oliveira J.R.M. PDGF family expression in glioblastoma multiforme: data compilation from Ivy Glioblastoma Atlas Project Database // Sci. Rep. 2017. Vol. 7, No. 1. P. 15271. doi: 10.1038/s41598-017-15045-w
- Bohm A.K., DePetro J., Binding C.E. et al. In vitro modeling of glioblastoma initiation using PDGF-AA and p53-null neural progenitors // Neuro. Oncol. 2020. Vol. 22, No. 8. P. 1150–1161. doi: 10.1093/neuonc/noaa093
- Clara C.A., Marie S.K., de Almeida J.R. et al. Angiogenesis and expression of PDGF-C, VEGF, CD105 and HIF-1α in human glioblastoma // Neuropathology. 2014. Vol. 34, No. 4. P. 343–352. doi: 10.1111/neup.12111
- Di Tomaso E., London N., Fuja D. et al. PDGF-C induces maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF treatment // PLoS One. 2009. Vol. 4, No. 4. P. e5123. doi: 10.1371/journal.pone.0005123
- Guérit E., Arts F., Dachy G. et al. PDGF receptor mutations in human diseases // Cell. Mol. Life Sci. 2021. Vol. 78, No. 8. P. 3867–3881. doi: 10.1007/s00018-020-03753-y
- Dico A.L., Martelli C., Diceglie C. et al. Hypoxia-inducible factor-1α activity as a switch for glioblastoma responsiveness to temozolomide // Front. Oncol. 2018. Vol. 8. P. 249. doi: 10.3389/fonc.2018.00249
- Renfrow J.J., Soike M.H., West J.L. et al. Attenuating hypoxia driven malignant behavior in glioblastoma with a novel hypoxia-inducible factor 2 alpha inhibitor // Sci. Rep. 2020. Vol. 10, No. 1. P. 15195. doi: 10.1038/s41598-020-72290-2
- Cornelison R.C., Brennan C.E., Kingsmore K.M., Munson J.M. Convective forces increase CXCR4-dependent glioblastoma cell invasion in GL261 murine model // Sci. Rep. 2018. Vol. 8. P. 17057. doi: 10.1038/s41598-018-35141-9
- Chao M., Liu N., Sun Z. et al. TGF-β signaling promotes glioma progression through stabilizing Sox9 // Front. Immunol. 2021. Vol. 11. P. 592080. doi: 10.3389/fimmu.2020.592080
- Yang R., Li X., Wu Y. et al. EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma // Oncogene. 2020. Vol. 39, No. 14. P. 2975–2986. doi: 10.1038/s41388-020-1199-2
- Pace K.R., Dutt R., Galileo D.S. Exosomal L1CAM stimulates glioblastoma cell motility, proliferation, and invasiveness // Int. J. Mol. Sci. 2019. Vol. 20, No. 16. P. 3982. doi: 10.3390/ijms20163982
- Lee Y., Lee JK., Ahn S. et al. WNT signaling in glioblastoma and therapeutic opportunities // Lab. Invest. 2016. Vol. 96, No. 2. P. 137–150. doi: 10.1038/labinvest.2015.140
- Cenciarelli C., Marei H.E., Felsani A. et al. PDGFRα depletion attenuates glioblastoma stem cells features by modulation of STAT3, RB1 and multiple oncogenic signals // Oncotarget. 2016. Vol. 7, No. 33. P. 53047–53063. doi: 10.18632/oncotarget.10132
- Gong Y., Ma Y., Sinyuk M. et al. Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation // Neuro. Oncol. 2016. Vol. 18, No. 1. P. 48–57. doi: 10.1093/neuonc/nov096
- Oliva C.R., Halloran B., Hjelmeland A.B. et al. IGFBP6 controls the expansion of chemoresistant glioblastoma through paracrine IGF2/IGF-1R signaling // Cell. Commun. Signal. 2018. Vol. 16, No. 1. P. 61. doi: 10.1186/s12964-018-0273-7
- Sesen J., Cammas A., Scotland S.J. et al. Int6/eIF3e is essential for proliferation and survival of human glioblastoma cells // Int. J. Mol. Sci. 2014. Vol. 15, No. 2. P. 2172–2190. doi: 10.3390/ijms15022172
- Pan P.C., Magge R.S. Mechanisms of EGFR Resistance in Glioblastoma // Int. J. Mol. Sci. 2020. Vol. 21, No. 22. P. 8471. doi: 10.3390/ijms21228471
- Radin D.P., Patel P. BDNF: an oncogene or tumor suppressor? // Anticancer Res. 2017. Vol. 37, No. 8. P. 3983–3990. doi: 10.21873/anticanres.11783
- Nie E., Jin X., Miao F. et al. TGF-β1 modulates temozolomide resistance in glioblastoma via altered microRNA processing and elevated MGMT // Neuro. Oncol. 2021. Vol. 23, No. 3. P. 435–446. doi: 10.1093/neuonc/noaa198
- Bai Y., Lathia J.D., Zhang P. et al. Molecular targeting of TRF2 suppresses the growth and tumorigenesis of glioblastoma stem cells // Glia. 2014. Vol. 62, No. 10. P. 1687–1698. doi: 10.1002/glia.22708
- Zhang L.-H., Yin A.-A., Cheng J.-X. et al. TRIM24 promotes glioma progression and enhances chemoresistance through activation of the PI3K/Akt signaling pathway // Oncogene. 2015. Vol. 34, No. 5. P. 600–610. doi: 10.1038/onc.2013.593
- Yu Z., Chen Y., Wang S. et al. Inhibition of NF-κB results in anti-glioma activity and reduces temozolomide-induced chemoresistance by down-regulating MGMT gene expression // Cancer Lett. 2018. Vol. 428. P. 77–89. doi: 10.1016/j.canlet.2018.04.033
- Edwards L.A., Kim S., Madany M. et al. ZEB1 is a transcription factor that is prognostic and predictive in diffuse gliomas // Front. Neurol. 2019. Vol. 9. P. 1199. doi: 10.3389/fneur.2018.01199
- Xu K., Zhang Z., Pei H. et al. FoxO3a induces temozolomide resistance in glioblastoma cells via the regulation of β-catenin nuclear accumulation // Oncol. Rep. 2017. Vol. 37, No. 4. P. 2391–2397. doi: 10.3892/or.2017.5459
- Zhang X., Lv QL., Huang Y.T. et al. Akt/FoxM1 signaling pathway-mediated upregulation of MYBL2 promotes progression of human glioma // J. Exp. Clin. Cancer Res. 2017. Vol. 36. P. 105. doi: 10.1186/s13046-017-0573-6
- Zhang C., Han X., Xu X. et al. FoxM1 drives ADAM17/EGFR activation loop to promote mesenchymal transition in glioblastoma // Cell Death Dis. 2018. Vol. 9. P. 469. doi: 10.1038/s41419-018-0482-4
- Kim J.-K., Jin X., Ham S.W. et al. IRF7 promotes glioma cell invasion by inhibiting AGO2 expression // Tumor Biol. 2015. Vol. 36, No. 7. P. 5561–5569. doi: 10.1007/s13277-015-3226-4
- Agnihotri S., Wolf A., Munoz D.M. et al. A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas // J. Exp. Med. 2011. Vol. 208, No. 4. P. 689–702. doi: 10.1084/jem.20102099
- Wu Z., Wang L., Li G. et al. Increased expression of microRNA-9 predicts an unfavorable prognosis in human glioma // Mol. Cell. Biochem. 2013. Vol. 384, No. 1–2. P. 263–268. doi: 10.1007/s11010-013-1805-5
- Wang G., Wang J.J., Tang H.M. et al. Targeting strategies on miRNA-21 and PDCD4 for glioblastoma // Arch. Biochem. Biophys. 2015. Vol. 580. P. 64–74. doi: 10.1016/j.abb.2015.07.001
- Cheng Q., Ma X., Cao H. et al. Role of miR-223/paired box 6 signaling in temozolomide chemoresistance in glioblastoma multiforme cells // Mol. Med. Rep. 2017. Vol. 15, No. 2. P. 597–604. doi: 10.3892/mmr.2016.6078
- Mathew L.K., Skuli N., Mucaj V. et al. MiR-218 opposes a critical RTK-HIF pathway in mesenchymal glioblastoma // Proc. Natl. Acad. Sci. USA. 2014. Vol. 111, No. 1. P. 291–296. doi: 10.1073/pnas.1314341111
- Wang Z., Li Z., Fu Y. et al. MiRNA-130a-3p inhibits cell proliferation, migration, and TMZ resistance in glioblastoma by targeting Sp1 // Am. J. Transl. Res. 2019. Vol. 11, No. 12. P. 7272–7285.
- Gao Y.-T., Chen X.-B., Liu H.-L. Up-regulation of miR-370-3p restores glioblastoma multiforme sensitivity to temozolomide by influencing MGMT expression // Sci. Rep. 2016. Vol. 6. P. 32972. doi: 10.1038/srep32972
- Tian T., Mingyi M., Qiu X. et al. MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma // Oncotarget. 2016. Vol. 7, No. 48. P. 79584–79595. doi: 10.18632/oncotarget.12861
- Nie E., Jin X., Wu W. et al. MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT // J. Neurooncol. 2017. Vol. 133, No. 1. P. 59–68. doi: 10.1007/s11060-017-2425-9
- Wang G.-H., Wang L.-Y., Zhang C. et al. MiR-1225-5p acts as tumor suppressor in glioblastoma via targeting FNDC3B // Open Med. (Wars). 2020. Vol. 15, No. 1. P. 872–881. doi: 10.1515/med-2020-0156
- Tanaka S., Kobayashi I., Oka H. et al. Drug-resistance gene expression and progression of astrocytic tumors // Brain Tumor Pathol. 2001. Vol. 18, No. 2. P. 131–137. doi: 10.1007/BF02479426
- Hegge B., Sjøttem E., Mikkola I. Generation of a PAX6 knockout glioblastoma cell line with changes in cell cycle distribution and sensitivity to oxidative stress // BMC Cancer. 2018. Vol. 18, No. 1. P. 496. doi: 10.1186/s12885-018-4394-6
- Talamillo A., Grande L., Ruiz-Ontañon P. et al. ODZ1 allows glioblastoma to sustain invasiveness through a Myc-dependent transcriptional upregulation of RhoA // Oncogene. 2017. Vol. 36, No. 12. P. 1733–1744. doi: 10.1038/onc.2016.341
- Xia L., Huang Q., Nie D. et al. PAX3 is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells // Brain Res. 2013. Vol. 1521. P. 68–78. doi: 10.1016/j.brainres.2013.05.021
- Pojo M., Gonçalves C.S., Xavier-Magalhães A. et al. A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide // Oncotarget. 2015. Vol. 6, No. 10. P. 7657–7674. doi: 10.18632/oncotarget.3150
- Moiseeva N.I., Susova O.Y., Mitrofanov A.A. et al. Connection between proliferation rate and temozolomide sensitivity of primary glioblastoma cell culture and expression of YB-1 and LRP/MVP // Biochem. (Mosc). 2016. Vol. 81, No. 6. P. 628–635. doi: 10.1134/S0006297916060109
- Cao Y., Li X., Kong S. et al. CDK4/6 inhibition suppresses tumour growth and enhances the effect of temozolomide in glioma cells // J. Cell Mol. Med. 2020. Vol. 24, No. 9. P. 5135–5145. doi: 10.1111/jcmm.15156
- Farhad M., Rolig A.S., Redmond W.L. The role of Galectin-3 in modulating tumor growth and immunosuppression within the tumor microenvironment // Oncoimmunology. 2018. Vol. 7, No. 6. P. e1434467. doi: 10.1080/2162402X.2018.1434467
- Wang H., Song X., Huang Q. et al. LGALS3 promotes treatment resistance in glioblastoma and is associated with tumor risk and prognosis // Cancer Epidemiol. Biomarkers Prev. 2019. Vol. 28, No. 4. P. 760–769. doi: 10.1158/1055-9965.EPI-18-0638
- Zhang M., Zhao Y., Zhao J. et al. Impact of AKAP6 polymorphisms on Glioma susceptibility and prognosis // BMC Neurol. 2019. Vol. 19. P. 296. doi: 10.1186/s12883-019-1504-2
- Mellai M., Cattaneo M., Storaci A.M. et al. SEL1L SNP rs12435998, a predictor of glioblastoma survival and response to radio-chemotherapy // Oncotarget. 2015. Vol. 6, No. 14. P. 12452–12467. doi: 10.18632/oncotarget.3611
- Riboni L., Hadi L.A., Navone S.E. et al. Sphingosine-1-phosphate in the tumor microenvironment: a signaling hub regulating cancer hallmarks // Cells. 2020. Vol. 9, No. 2. P. 337. doi: 10.3390/cells9020337
- Chen D. Tumor formation and drug resistance properties of human glioblastoma side population cells // Mol. Med. Rep. 2015. Vol. 11, No. 6. P. 4309–4314. doi: 10.3892/mmr.2015.3279
- Kaneko S., Nakatani Y., Takezaki T. et al. Ceacam1L modulates STAT3 signaling to control the proliferation of glioblastoma-initiating cells // Cancer Res. 2015. Vol. 75, No. 19. P. 4224–4234. doi: 10.3892/mmr.2015.3279
- Yu F., Li G., Gao J. et al. SPOCK1 is upregulated in recurrent glioblastoma and contributes to metastasis and temozolomide resistance // Cell Prolif. 2016. Vol. 49, No. 2. P. 195–206. doi: 10.1111/cpr.12241
- Afghani N., Mehta T., Wang J. et al. Microtubule actin cross-linking factor 1, a novel target in glioblastoma // Int. J. Oncol. 2017. Vol. 50, No. 1. P. 310–316. doi: 10.3892/ijo.2016.3798
- Guerrero P.A., Yin W., Camacho L. et al. Oncogenic role of Merlin/NF2 in glioblastoma // Oncogene. 2015. Vol. 34, No. 20. P. 2621–2630. doi: 10.1038/onc.2014.185
- Xie Z., Janczyk P.Ł., Zhang Y. et al. A cytoskeleton regulator AVIL drives tumorigenesis in glioblastoma // Nat. Commun. 2020. Vol. 11. P. 3457. doi: 10.1038/s41467-020-17279-1
- Noh H., Yan J., Hong S. et al. Discovery of cell surface vimentin targeting mAb for direct disruption of GBM tumor initiating cells // Oncotarget. 2016. Vol. 7, No. 44. P. 72021–72032. doi: 10.18632/oncotarget.12458
- Zhao J., Zhang L., Dong X. et al. High expression of vimentin is associated with progression and a poor outcome in glioblastoma // Appl. Immunohistochem. Mol. Morphol. 2018. Vol. 26, No. 5. P. 337–344. doi: 10.1097/PAI.0000000000000420
- Satelli A., Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy// Cell. Mol. Life Sci. 2011. Vol. 68, No. 18. P. 3033–3046. doi: 10.1007/s00018-011-0735-1
- Zottel A., Jovčevska I., Šamec N., Komel R. Cytoskeletal proteins as glioblastoma biomarkers and targets for therapy: A systematic review // Crit. Rev. Oncol. Hematol. 2021. Vol. 160. P. 103283. doi: 10.1016/j.critrevonc.2021.103283
- Ahir B.K., Engelhard H.H., Lakka S.S. Tumor development and angiogenesis in adult brain tumor: glioblastoma // Mol. Neurobiol. 2020. Vol. 57. P. 2461–2478. doi: 10.1007/s12035-020-01892-8
- Carmeliet P., Jain R.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases // Nat. Rev. Drug Discov. 2011. Vol. 10, No. 6. P. 417–427. doi: 10.1038/nrd3455
- Loureiro L.V.M., Neder L., Callegaro-Filho D. et al. The immunohistochemical landscape of the VEGF family and its receptors in glioblastomas // Surg. Exp. Pathol. 2020. Vol. 3. P. 9. doi: 10.1186/s42047-020-00060-5
- Arif S.H., Pandith A.A., Tabasum R. et al. Significant effect of anti-tyrosine Kinase Inhibitor (Gefitinib) on overall survival of the glioblastoma multiforme patients in the backdrop of mutational status of epidermal growth factor receptor and PTEN Genes // Asian J. Neurosurg. 2018. Vol. 13, No. 1. P. 46–52. doi: 10.4103/ajns.AJNS_95_17
- Krishnan S., Szabo E., Burghardt I. et al. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition // Oncotarget. 2015. Vol. 6, No. 26. P. 22480–22495. doi: 10.18632/oncotarget.4310
- Ichikawa K., Watanabe Miyano S., Minoshima Y. et al. Activated FGF2 signaling pathway in tumor vasculature is essential for acquired resistance to anti-VEGF therapy // Sci. Rep. 2020. Vol. 10. P. 2939. doi: 10.1038/s41598-020-59853-z
- Goldman C.K., Kim J., Wong W.L. et al. Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology // Mol. Biol. Cell. 1993. Vol. 4, No. 1. P. 121–133. doi: 10.1091/mbc.4.1.121
- Krishnan S., Szabo E., Burghardt I. et al. Modulation of cerebral endothelial cell function by TGF-β in glioblastoma: VEGF-dependent angiogenesis versus endothelial mesenchymal transition // Oncotarget. 2015. Vol. 6, No. 26. P. 22480–22495. doi: 10.18632/oncotarget.4310
- Kessler T., Sahm F., Blaes J. et al. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma // Oncotarget. 2015. Vol. 6, No. 31. P. 31050–31068. doi: 10.18632/oncotarget.2910
- Serban F., Daianu O., Tataranu L.G. et al. Silencing of epidermal growth factor, latrophilin and seven transmembrane domain-containing protein 1 (ELTD1) via siRNA-induced cell death in glioblastoma // J. Immunoassay Immunochem. 2017. Vol. 38, No. 1. P. 21–33. doi: 10.1080/15321819.2016.1209217
- Yuan G., Yan S., Xue H. et al. JSI-124 suppresses invasion and angiogenesis of glioblastoma cells in vitro // PLoS One. 2015. Vol. 10, No. 3. P. e0118894. doi: 10.1371/journal.pone.0118894
- Chang N., Ahn S.H., Kong D.S. et al. The role of STAT3 in glioblastoma progression through dual influences on tumor cells and the immune microenvironment // Mol. Cell. Endocrinol. 2017. Vol. 451. P. 53–65. doi: 10.1016/j.mce.2017.01.004
- Li J.L., Sainson R.C., Oon C.E. et al. DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo // Cancer Res. 2011. Vol. 71, No. 18. P. 6073–6083. doi: 10.1158/0008-5472.CAN-11-1704
- Hochart A., Leblond P., Le Bourhis X. et al. MET receptor inhibition: Hope against resistance to targeted therapies? // Bull. Cancer. 2017. Vol. 104, No. 2. P. 157–166. (In French). doi: 10.1016/j.bulcan.2016.10.014
- Chen L., Feng P., Li S. et al. Effect of hypoxia-inducible factor-1α silencing on the sensitivity of human brain glioma cells to doxorubicin and etoposide // Neurochem. Res. 2009. Vol. 34, No. 5. P. 984–990. doi: 10.1007/s11064-008-9864-9
- Muh C.R., Joshi S., Singh A.R. et al. PTEN status mediates 2ME2 anti-tumor efficacy in preclinical glioblastoma models: role of HIF1α suppression // J. Neurooncol. 2014. Vol. 116, No. 1. P. 89–97. doi: 10.1007/s11060-013-1283-3
- Jimenez-Pascual A., Siebzehnrubl F.A. Fibroblast growth factor receptor functions in glioblastoma // Cells. 2019. Vol. 8, No. 7. P. 715. doi: 10.3390/cells8070715
- Hierro C., Rodon J., Tabernero J. Fibroblast growth factor (FGF) receptor/FGF inhibitors: novel targets and strategies for optimization of response of solid tumors // Semin. Oncol. 2015. Vol. 42, No. 6. P. 801–819. doi: 10.1053/j.seminoncol.2015.09.027
- Hsieh A., Ellsworth R., Hsieh D. Hedgehog/GLI1 regulates IGF dependent malignant behaviors in glioma stem cells // J. Cell. Physiol. 2011. Vol. 226, No. 4. P. 1118–1127. doi: 10.1002/jcp.22433
- Cherepanov S.A., Baklaushev V.P., Gabashvili A.N. et al. Hedgehog signaling in the pathogenesis of neuro-oncology diseases // Biomed. Khim. 2015. Vol. 61, No. 3. P. 332–342. (In Russ.). doi: 10.18097/PBMC20156103332
- Tirrò E., Massimino M., Romano C. et al. Prognostic and therapeutic roles of the insulin growth factor system in glioblastoma // Front. Oncol. 2021. Vol. 10. P. 612385. doi: 10.3389/fonc.2020.612385
- Martin V., Xu J., Pabbisetty S.K. et al. Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters // Oncogene. 2009. Vol. 28, No. 24. P. 2358–2363. doi: 10.1038/onc.2009.103
- Di Tomaso E., Snuderl M., Kamoun W.S. et al. Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape // Cancer Res. 2011. Vol. 71, No. 1. P. 19–28. doi: 10.1158/0008-5472.CAN-10-2602
- Ma Y., Yuan R.-Q., Fan S. et al. Identification of genes that modulate sensitivity of U373MG glioblastoma cells to cis-platinum // Anticancer Drugs. 2006. Vol. 17, No. 7. P. 733–751. doi: 10.1097/01.cad.0000217429.67455.18
- Yadav V.N., Zamler D., Baker G.J. et al. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study // Oncotarget. 2016. Vol. 7. P. 83701–83719. doi: 10.18632/oncotarget.13295
- Gatti M., Pattarozzi A., Bajetto A. et al. Inhibition of CXCL12/CXCR4 autocrine/paracrine loop reduces viability of human glioblastoma stem-like cells affecting self-renewal activity // Toxicology. 2013. Vol. 314, No. 2–3. P. 209–220. doi: 10.1016/j.tox.2013.10.003
- Yin D., Chen W., O’Kelly J. et al. Connective tissue growth factor associated with oncogenic activities and drug resistance in glioblastoma multiforme // Int. J. Cancer. 2010. Vol. 127, No. 10. P. 2257–2267. doi: 10.1002/ijc.25257
- Dai D., Huang W., Lu Q. et al. miR-24 regulates angiogenesis in gliomas // Mol. Med. Rep. 2018. Vol. 18, No. 1. P. 358–368. doi: 10.3892/mmr.2018.8978
- Smits M., Wurdinger T., van het Hof B. et al. Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma // FASEB J. 2012. Vol. 26, No. 6. P. 2639–2647. doi: 10.1096/fj.11-202820
- Wang Q., Xu B., Du J. et al. MicroRNA-139-5p/Flt1/Wnt/β-catenin regulatory crosstalk modulates the progression of glioma // Int. J. Mol. Med. 2018. Vol. 41, No. 4. P. 2139–2149. doi: 10.3892/ijmm.2018.3439
- Duncan C.G., Killela P.J., Payne C.A. et al. Integrated genomic analyses identify ERRFI1 and TACC3 as glioblastoma-targeted genes // Oncotarget. 2010. Vol. 1, No. 4. P. 265–277. doi: 10.18632/oncotarget.137
- Wang L., Shi Z.-M., Jiang C.-F. et al. MiR-143 acts as a tumor suppressor by targeting N-RAS and enhances temozolomide-induced apoptosis in glioma // Oncotarget. 2014. Vol. 5. P. 5416. doi: 10.18632/oncotarget.2116
- Chen K.-C., Chen P.-H., Ho K.-H. et al. IGF-1-enhanced miR-513a-5p signaling desensitizes glioma cells to temozolomide by targeting the NEDD4L-inhibited Wnt/β-catenin pathway // PLoS One. 2019. Vol. 14, No. 12. P. e0225913. doi: 10.1371/journal.pone.0225913
- Zeng A., Yin J., Li Y. et al. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma // Cell Death Dis. 2018. Vol. 9, No. 3. P. 394. doi: 10.1038/s41419-018-0343-1
- Balandeh E., Mohammadshafie K., Mahmoudi Y. et al. Roles of non-coding RNAs and angiogenesis in glioblastoma // Front. Cell Dev. Biol. 2021. Vol. 9. P. 716462. doi: 10.3389/fcell.2021.716462
- Mathew L.K., Huangyang P., Mucaj V. et al. Feedback circuitry between miR-218 repression and RTK activation in glioblastoma // Sci. Signal. 2015. Vol. 8, No. 375. P. ra42. doi: 10.1126/scisignal.2005978
- Smits M., Nilsson J., Mir S.E. et al. miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis // Oncotarget. 2010. Vol. 1, No. 8. P. 710–720. doi: 10.18632/oncotarget.205
- Sun J., Zheng G., Gu Z., Guo Z. MiR-137 inhibits proliferation and angiogenesis of human glioblastoma cells by targeting EZH2 // J. Neurooncol. 2015. Vol. 122. P. 481–489. doi: 10.1007/s11060-015-1753-x
- Zhang J., Chen L., Han L. et al. EZH2 is a negative prognostic factor and exhibits pro-oncogenic activity in glioblastoma // Cancer Lett. 2015. Vol. 356, No. 2PtB. P. 929–936. doi: 10.1016/j.canlet.2014.11.003
- Tian J.-H., Mu L.-J., Wang M.-Y. et al. FOXM1-dependent transcriptional regulation of EZH2 induces proliferation and progression in prostate cancer // Anticancer Agents Med. Chem. 2021. Vol. 21, No. 14. P. 1835–1841. doi: 10.2174/1871520620666200731161810
- Gouazé-Andersson V., Ghérardi M.-J., Lemarié A. et al. FGFR1/FOXM1 pathway: a key regulator of glioblastoma stem cells radioresistance and a prognosis biomarker // Oncotarget. 2018. Vol. 9. P. 31637–31649. doi: 10.18632/oncotarget.25827
- Zaman N., Dass S.S., Parcq P. et al. The KDR (VEGFR-2) genetic polymorphism Q472H and c-KIT polymorphism M541L are associated with more aggressive behaviour in astrocytic gliomas // Cancer Genomics Proteomics. 2020. Vol. 17, No. 6. P. 715–727. doi: 10.21873/cgp.20226
- Yu X., Sun N.R., Jang H.T. et al. Associations between EGFR gene polymorphisms and susceptibility to glioma: a systematic review and meta-analysis from GWAS and case-control studies // Oncotarget. 2017. Vol. 8, No. 49. P. 86877–86885. doi: 10.18632/oncotarget.21011
- Zhao Y., Wang H., He C. Drug resistance of targeted therapy for advanced non-small cell lung cancer harbored EGFR mutation. From mechanism analysis to clinical strategy // J. Cancer Res. Clin. Oncol. 2021. Vol. 147, No. 12. P. 3653–3664. doi: 10.1007/s00432-021-03828-8
- Saleem H., Kulsoom Abdul U., Küçükosmanoglu A. et al. The TICking clock of EGFR therapy resistance in glioblastoma: target independence or target compensation // Drug Resist. Updat. 2019. Vol. 43. P. 29–37. doi: 10.1016/j.drup.2019.04.002
- Ma Y., Tang N., Thompson R.C. InsR/IGF1R pathway mediates resistance to EGFR inhibitors in glioblastoma // Clin. Cancer Res. 2016. Vol. 22. P. 1767–1776. doi: 10.1158/1078-0432.CCR-15-1677
- Akhavan D., Pourzia A.L., Nourian A.A. et al. De-repression of PDGFRβ transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients // Cancer Discov. 2013. Vol. 3, No. 5. P. 534–547. doi: 10.1158/2159-8290.CD-12-0502
- Song K., Yuan Y., Lin Y. et al. ERBB3, IGF1R, and TGFBR2 expression correlate with PDGFR expression in glioblastoma and participate in PDGFR inhibitor resistance of glioblastoma cells // Am. J. Cancer Res. 2018. Vol. 8, No. 5. P. 792–809.
- Almiron Bonnin D.A., Ran C., Havrda M.C. Insulin-mediated signaling facilitates resistance to PDGFR inhibition in proneural hPDGFB-driven gliomas // Mol. Cancer Ther. 2017. Vol. 16. P. 705–716. doi: 10.1158/1535-7163.MCT-16-0616
- Pullen N.A., Pickford A.R., Perry M.M. et al. Current insights into matrix metalloproteinases and glioma progression: transcending the degradation boundary // Metalloproteinases in Medicine. 2018. Vol. 2018, No. 5. P. 13–30. doi: 10.2147/MNM.S105123
- Xu S., Xu H., Wang W. et al. The role of collagen in cancer: from bench to bedside // J. Transl. Med. 2019. Vol. 17. P. 309. doi: 10.1186/s12967-019-2058-1
- Mooney K.L., Choy W., Sidhu S. et al. The role of CD44 in glioblastoma multiforme // J. Clin. Neurosci. 2016. Vol. 34. P. 1–5. doi: 10.1016/j.jocn.2016.05.012
- Urbantat R.M., Blank A., Kremenetskaia I. The CXCL2/IL8/CXCR2 pathway is relevant for brain tumor malignancy and endothelial cell function // Int. J. Mol. Sci. 2021. Vol. 22, No. 5. P. 2634. doi: 10.3390/ijms22052634
- Bordji K., Grandval A., Cuhna-Alves L. et al. Hypoxia-inducible factor-2α (HIF-2α), but not HIF-1α, is essential for hypoxic induction of class III β-tubulin expression in human glioblastoma cells // FEBS J. 2014. Vol. 281, No. 23. P. 5220–5236. doi: 10.1111/febs.13062
- Chou C.W., Wang C.C., Wu C.P. et al. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1 // Neurooncol. 2012. Vol. 14, No. 10. P. 1227–1238. doi: 10.1093/neuonc/nos195
- Zhang L., Yang H., Zhang W. et al. Clk1 -regulated aerobic glycolysis is involved in gliomas chemoresistance // J. Neurochem. 2017. Vol. 142, No. 4. P. 574–588. doi: 10.1111/jnc.14096
- Kang W., Kim S.H., Cho H.J. et al. Talin1 targeting potentiates anti-angiogenic therapy by attenuating invasion and stem-like features of glioblastoma multiforme // Oncotarget. 2015. Vol. 6, No. 29. P. 27239–27251. doi: 10.18632/oncotarget.4835
- Matini A.H., Naeini M.M., Kashani H.H. et al. Evaluation of Nestin and EGFR in patients with glioblastoma multiforme in a public hospital in Iran // Asian Pac. J. Cancer Prev. 2020. Vol. 21, No. 10. P. 2889–2894. doi: 10.31557/APJCP.2020.21.10.2889
- Ahmed E.M., Bandopadhyay G., Coyle B., Grabowska A. A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells // Cell Oncol. (Dordr). 2018. Vol. 41, No. 3. P. 319–328. doi: 10.1007/s13402-018-0374-8
- Suvasini R., Shruti B., Thota B. et al. Insulin growth factor-2 binding protein 3 (IGF2BP3) is a glioblastoma-specific marker that activates phosphatidylinositol 3-kinase/mitogen-activated protein kinase (PI3K/MAPK) pathways by modulating IGF-2 // J. Biol. Chem. 2011. Vol. 286, No. 29. P. 25882–25890. doi: 10.1074/jbc.M110.178012
- Womeldorff M., Gillespie D., Jensen R.L. Hypoxia-inducible factor-1 and associated upstream and downstream proteins in the pathophysiology and management of glioblastoma // Neurosurg. Focus. 2014. Vol. 37, No. 6. P. E8. doi: 10.3171/2014.9.focus14496
- Chen X.-C., Wei X.-T., Guan J.-H. et al. EGF stimulates glioblastoma metastasis by induction of matrix metalloproteinase-9 in an EGFR-dependent mechanism // Oncotarget. 2017. Vol. 8, No. 39. P. 65969–65982. doi: 10.18632/oncotarget.19622
- Rogers A.E., Le J.P., Sather S. et al. Mer receptor tyrosine kinase inhibition impedes glioblastoma multiforme migration and alters cellular morphology // Oncogene. 2012. Vol. 31, No. 38. P. 4171–4181. doi: 10.1038/onc.2011.588
- Wang Y., Moncayo G., Morin P. et al. Mer receptor tyrosine kinase promotes invasion and survival in glioblastoma multiforme // Oncogene. 2013. Vol. 32. P. 872–882. doi: 10.1038/onc.2012.104
- Wislet S., Vandervelden G., Rogister B. From neural crest development to cancer and vice versa: How p75 NTR and (Pro)neurotrophins could act on cell migration and invasion? // Front. Mol. Neurosci. 2018. Vol. 11. P. 244. doi: 10.3389/fnmol.2018.00244
- Yang W., Wu P.F., Ma J.X. et al. Sortilin promotes glioblastoma invasion and mesenchymal transition through GSK-3β/β-catenin/twist pathway // Cell Death Dis. 2019. Vol. 10. P. 208. doi: 10.1038/s41419-019-1449-9
- Brown M.C., Staniszewska I., Lazarovici P. et al. Regulatory effect of nerve growth factor in α9β1 integrin–dependent progression of glioblastoma // Neuro. Oncol. 2008. Vol. 10, No. 6. P. 968–980. doi: 10.1215/15228517-2008-047
- Qi Q., He K., Liu X. et al. Disrupting the PIKE-A/Akt interaction inhibits glioblastoma cell survival, migration, invasion and colony formation // Oncogene. 2013. Vol. 32, No. 8. P. 1030–1040. doi: 10.1038/onc.2012.109
- So J.-S., Kim H., Han K.-S. Mechanisms of invasion in glioblastoma: extracellular matrix, Ca2+ signaling, and glutamate // Front. Cell Neurosci. 2021. Vol. 15. P. 663092. doi: 10.3389/fncel.2021.663092
- Raychaudhuri B., Han Y., Lu T. et al. Aberrant constitutive activation of nuclear factor κB in glioblastoma multiforme drives invasive phenotype // J. Neurooncol. 2007. Vol. 85, No. 1. P. 39–47. doi: 10.1007/s11060-007-9390-7
- Shan Q., Li S., Cao Q. et al. Inhibition of chromosomal region maintenance 1 suppresses the migration and invasion of glioma cells via inactivation of the STAT3/MMP2 signaling pathway // Korean J. Physiol. Pharmacol. 2020. Vol. 24, No. 3. P. 193–201. doi: 10.4196/kjpp.2020.24.3.193
- Brantley E.C., Benveniste E.N. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas // Mol. Cancer Res. 2008. Vol. 6, No. 5. P. 675–684. doi: 10.1158/1541-7786.MCR-07-2180
- Cheng M., Zeng Y., Zhang T. et al. Transcription factor ELF1 activates MEIS1 transcription and then regulates the GFI1/FBW7 axis to promote the development of glioma // Mol. Ther. Nucleic. Acids. 2020. Vol. 23. P. 418–430. doi: 10.1016/j.omtn.2020.10.015
- Ma J., Wang P., Liu Y. et al. Krüppel-like factor 4 regulates blood-tumor barrier permeability via ZO-1, occludin and claudin-5 // J. Cell. Physiol. 2014;229(7):916–926. doi: 10.1002/jcp.24523
- Chen H., Lu Q., Fei X. et al. miR-22 inhibits the proliferation, motility, and invasion of human glioblastoma cells by directly targeting SIRT1 // Tumour Biol. 2016. Vol. 37, No. 5. P. 6761–6768. doi: 10.1007/s13277-015-4575-8
- Chakrabarti M., Ray S.K. Direct transfection of miR-137 mimics is more effective than DNA demethylation of miR-137 promoter to augment anti-tumor mechanisms of delphinidin in human glioblastoma U87MG and LN18 cells // Gene. 2015. Vol. 573, No. 1. P. 141–152. doi: 10.1016/j.gene.2015.07.034
- Lv S., Sun B., Dai C. et al. The downregulation of MicroRNA-146a modulates TGF-beta signaling pathways activity in glioblastoma // Mol. Neurobiol. 2015. Vol. 52, No. 3. P. 1257–1262. doi: 10.1007/s12035-014-8938-8
- Katakowski M., Zheng X., Jiang F. et al. MiR-146b-5p suppresses EGFR expression and reduces in vitro migration and invasion of glioma // Cancer Invest. 2010. Vol. 28, No. 10. P. 1024–1030. doi: 10.3109/07357907.2010.512596
- Rao S.A., Arimappamagan A., Pandey P. et al. miR-219-5p inhibits receptor tyrosine kinase pathway by targeting EGFR in glioblastoma // PLoS One. 2013. Vol. 8, No. 5. P. e63164. doi: 10.1371/journal.pone.0063164
- Gao Y., Yu H., Liu Y. et al. Long non-coding RNA HOXA-AS2 regulates malignant glioma behaviors and vasculogenic mimicry formation via the MiR-373/EGFR Axis. Cell. Physiol. Biochem. 2018;45(1):131–147. doi: 10.1159/000486253
- Zhou X.Y., Liu H., Ding Z.B. et al. lncRNA SNHG16 promotes glioma tumorigenicity through miR-373/EGFR axis by activating PI3K/AKT pathway // Genomics. 2020. Vol. 112, No. 1. P. 1021–1029. doi: 10.1016/j.ygeno.2019.06.017
- Pan D.S., Cao P., Li J.J. et al. MicroRNA-374b inhibits migration and invasion of glioma cells by targeting EGFR // Eur. Rev. Med. Pharmacol. Sci. 2019. Vol. 23, No. 10. P. 4254–4263. doi: 10.26355/eurrev_201905_17930
- Li X., Liu Y., Granberg K.J. et al. Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma // Oncogene. 2015. Vol. 34, No. 13. P. 1619–1628. doi: 10.1038/onc.2014.98
- Jiang C., Shen F., Du J. et al. MicroRNA-564 is downregulated in glioblastoma and inhibited proliferation and invasion of glioblastoma cells by targeting TGF-beta1 // Oncotarget. 2016. Vol. 7, No. 35. P. 56200–56208. doi: 10.18632/oncotarget.8987
- Ji Y., Sun Q., Zhang J., Hu H. MiR-615 inhibits cell proliferation, migration and invasion by targeting EGFR in human glioblastoma // Biochem. Biophys. Res. Commun. 2018. Vol. 499, No. 3. P. 719–726. doi: 10.1016/j.bbrc.2018.03.217
- Wang F., Xiao W., Sun J. et al. MiRNA-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma // Tumour Biol. 2014. Vol. 35, No. 9. P. 8653–8658. doi: 10.1007/s13277-014-2131-6
- Lu Y., Chopp M., Zheng X. et al. Overexpression of miR145 in U87 cells reduces glioma cell malignant phenotype and promotes survival after in vivo implantation // Int. J. Oncol. 2015. Vol. 46, No. 3. P. 1031–1038. doi: 10.3892/ijo.2014.2807
- Lu Y., Chopp M., Zheng X. et al. MiR-145 reduces ADAM17 expression and inhibits in vitro migration and invasion of glioma cells // Oncol. Rep. 2013. Vol. 29, No. 1. P. 67–72. doi: 10.3892/or.2012.2084
- Zhang K.L., Zhou X., Han L. et al. MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab // Mol. Cancer. 2014. Vol. 13. P. 63. doi: 10.1186/1476-4598-13-63
- Zhao K., Wang Q., Wang Y. et al. EGFR/c-myc axis regulates TGFbeta/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas // Cancer Lett. 2017. Vol. 406. P. 12–21. doi: 10.1016/j.canlet.2017.07.022
- Yin D., Ogawa S., Kawamata N. et al. miR-34a functions as a tumor suppressor modulating EGFR in glioblastoma multiforme // Oncogene. 2013. Vol. 32, No. 9. P. 1155–1163. doi: 10.1038/onc.2012.132
- Kim J., Zhang Y., Skalski M. et al. microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma // Cancer Res. 2014. Vol. 74. No. 5. P. 1541–1553. doi: 10.1158/0008-5472.CAN-13-1449
- Chai C., Song L.J., Han S.Y. et al. MicroRNA-21 promotes glioma cell proliferation and inhibits senescence and apoptosis by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway // CNS Neurosci. Ther. 2018. Vol. 24, No. 5. P. 369–380. doi: 10.1111/cns.12785
- Kwak S.Y., Kim B.Y., Ahn H.J. et al. Ionizing radiation-inducible miR-30e promotes glioma cell invasion through EGFR stabilization by directly targeting CBL-B // FEBS J. 2015. Vol. 282, No. 8. P. 1512–1525. doi: 10.1016/j.gene.2015.07.034
- Kwak S.Y., Yang J.S., Kim B.Y. et al. Ionizing radiation-inducible miR-494 promotes glioma cell invasion through EGFR stabilization by targeting p190B rhoGAP // Biochim. Biophys. Acta. 2014. Vol. 1843, No. 3. P. 508–516. doi: 10.1016/j.bbamcr.2013.11.021
- Munoz J.L., Rodriguez-Cruz V., Greco S.J. et al. Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor mediated induction of connexin 43 // Cell Death Dis. 2014. Vol. 5, No. 3. P. e1145. doi: 10.1038/cddis.2014.111
- Wang H., Wang Y., Jiang C. Stromal protein periostin identified as a progression associated and prognostic biomarker in glioma via inducing an invasive and proliferative phenotype // Int. J. Oncol. 2013. Vol. 42, No. 5. P. 1716–1724. doi: 10.3892/ijo.2013.1847
- Ketchen S.E., Gamboa-Esteves F.O., Lawler S.E. et al. Drug resistance in glioma cells induced by a mesenchymal-amoeboid migratory switch // Biomedicines. 2021. Vol. 10, No. 1. P. 9. doi: 10.3390/biomedicines10010009
- Zeng L., Kang C., Di C. et al. The adherens junction-associated protein 1 is a negative transcriptional regulator of MAGEA2, which potentiates temozolomide-induced apoptosis in GBM // Int. J. Oncol. 2014. Vol. 44, No. 4. P. 1243–1251. doi: 10.3892/ijo.2014.2277
- George J., Gondi C.S., Dinh D.H. et al. Restoration of tissue factor pathway inhibitor-2 in a human glioblastoma cell line triggers caspase-mediated pathway and apoptosis // Clin. Cancer Res. 2007. Vol. 13, No. 12. P. 3507–3517. doi: 10.1158/1078-0432.CCR-06-3023
- El-Khayat S.M., Arafat W.O. Therapeutic strategies of recurrent glioblastoma and its molecular pathways ‘Lock up the beast’ // Ecancermedicalscience. 2021. Vol. 15. P. 1176. doi: 10.3332/ecancer.2021.1176
- Zheng Q., Han L., Dong Y. et al. JAK2/STAT3 targeted therapy suppresses tumor invasion via disruption of the EGFRvIII/JAK2/STAT3 axis and associated focal adhesion in EGFRvIII-expressing glioblastoma // Neuro. Oncol. 2014. Vol. 16, No. 9. P. 1229–1243. doi: 10.1093/neuonc/nou046
- Tini P., Nardone V., Pastina P. et al. epidermal growth factor receptor expression predicts time and patterns of recurrence in patients with glioblastoma after radiotherapy and temozolomide // World Neurosurg. 2018. Vol. 109. P. e662–e668. doi: 10.1016/j.wneu.2017.10.052
- Hau P., Jachimczak P., Schlaier J. et al. TGF-β2 signaling in high-grade gliomas // Curr. Pharm. Biotechnol. 2011. Vol. 12, No. 12. P. 2150–2157. doi: 10.2174/138920111798808347
- Gaetani P., Hulleman E., Levi D. et al. Expression of the transcription factor HEY1 in glioblastoma: a preliminary clinical study // Tumori. 2010. Vol. 96, No. 1. P. 97–102.
- Shahi M.H., Farheen S., Mariyath M.P.M. et al. Potential role of Shh-Gli1-BMI1 signaling pathway nexus in glioma chemoresistance // Tumour Biol. 2016. Vol. 37, No. 11. P. 15107–15114. doi: 10.1007/s13277-016-5365-7
- Quail D.F., Bowman R.L., Akkari L. et al. The tumor microenvironment underlies acquired resistance to CSF1R inhibition in gliomas // Science. 2016. Vol. 352, No. 6288. P. aad3018. doi: 10.1126/science.aad3018
- Koo C.-Y., Muir K.W., Lam E.W.F. FOXM1: from cancer initiation to progression and treatment // Biochim. Biophys. Acta. 2012. Vol. 1819, No. 1. P. 28–37. doi: 10.1016/j.bbagrm.2011.09.004
- Wang Y., Wang X., Zhang J. et al. MicroRNAs involved in the EGFR/PTEN/AKT pathway in gliomas // J. Neurooncol. 2012. Vol. 106, No. 2. P. 217–224. doi: 10.1007/s11060-011-0679-1
- Tian T., Mingyi M., Qiu X., Qiu Y. MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma // Oncotarget. 2016. Vol. 7, No. 48. P. 79584–79595. doi: 10.18632/oncotarget.12861
- Yue X., Lan F., Hu M. et al. Downregulation of serum microRNA-205 as a potential diagnostic and prognostic biomarker for human glioma // J. Neurosurg. 2016. Vol. 124, No. 1. P. 122–128. doi: 10.3171/2015.1.JNS141577
- Huang H., Xiang Y., Su B. et al. Potential roles for Gfi1 in the pathogenesis and proliferation of glioma // Med. Hypotheses. 2013. Vol. 80, No. 5. P. 629–632. doi: 10.1016/j.mehy.2013.02.007
- Yao C.J., Han T.Y., Shih P.H. et al. Elimination of cancer stem-like side population in human glioblastoma cells accompanied with stemness gene suppression by Korean herbal recipe MSC500 // Integr. Cancer Ther. 2014. Vol. 13, No. 6. P. 541–554. doi: 10.1177/1534735414549623
Дополнительные файлы
