Влияние лактоферрина на эпигенетические характеристики клеток млекопитающих разного типа

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Несмотря на огромное количество накопленных данных, изучение особенностей взаимодействия между белками и эпигенетическими механизмами в норме и при различных патологиях остается одной из важнейших задач молекулярной биологии. Поиск эндогенных и экзогенных факторов, влияющих на эпигеном эукариот, по-прежнему актуален. Лактоферрин является вторым по распространенности белком молока, который обладает противовоспалительными, противогрибковыми, антибактериальными и противораковыми свойствами. Этот белок может действовать как фактор транскрипции, регулирующий экспрессию некоторых генов. Однако мало внимания уделяется использованию лактоферрина в качестве фактора, модулирующего эпигенетические модификации (механизмы). В данном обзоре представлены данные, указывающие на то, что лактоферрин может прямо и/или косвенно влиять на эпигенетические механизмы (метилирование ДНК, модификация гистонов, компактизация хроматина и микроРНК-пути) в различных типах клеток, в частности в опухолевых клетках.

Об авторах

Кинда Али Шарруф

Федеральное государственное бюджетное научное учреждение «Институт экспериментальной медицины»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет»

Email: kinda996@yahoo.com
ORCID iD: 0000-0003-0926-0549

студентка 2-го курса магистратуры, кафедра генетики и биотехнологии, биолого-почвенный факультет

Россия, Санкт-Петербург

Ирина Олеговна Сучкова

Федеральное государственное бюджетное научное учреждение «Институт экспериментальной медицины»

Автор, ответственный за переписку.
Email: irsuchkova@mail.ru
ORCID iD: 0000-0003-2127-0459
SPIN-код: 4155-7314
Scopus Author ID: 6602838276
ResearcherId: H-4484-2014

канд. биол. наук, старший научный сотрудник, лаборатория молекулярной цитогенетики развития млекопитающих, отдел молекулярной генетики

Россия, Санкт-Петербург

Список литературы

  1. McGee S.L., Hargreaves M. Epigenetics and exercise // Trends Endocrinol. Metab. 2019. Vol. 30, No. 9. P. 636–645. doi: 10.1016/j.tem.2019.06.002
  2. Bird A.P., Wolffe A.P. Methylation-induced repression--belts, braces, and chromatin // Cell. 1999. Vol. 99, No. 5. P. 451–454. doi: 10.1016/s0092-8674(00)81532-9
  3. Ramassone A., Pagotto S., Veronese A., Visone R. Epigenetics and MicroRNAs in Cancer // Int. J. Mol. Sci. 2018. Vol. 19, No. 2. P. 459. doi: 10.3390/ijms19020459
  4. Jenuwein T. Re-SET-ting heterochromatin by histone methyltransferases // Trends Cell. Biol. 2001. Vol. 11, No. 6. P. 266–273. doi: 10.1016/S0962-8924(01)02001-3
  5. Kanwar J.R., Roy K., Patel Y. et al. Multifunctional iron bound lactoferrin and nanomedicinal approaches to enhance its bioactive functions // Molecules. 2015. Vol. 20, No. 6. P. 9703–9731. doi: 10.3390/molecules20069703
  6. Sorensen M., Sorensen S.P.L. The Proteins in whey // Compt. Rendus. Trav. Lab. Carlsberg. 1940. Vol. 23, No. 7. P. 55–99.
  7. Johansson B. Isolation of an iron-containing red protein from human milk // Acta Chem. Scand. 1960. Vol. 14. P. 510–512. doi: 10.3891/acta.chem.scand.14-0510
  8. Yount N.Y., Andrés M.T., Fierro J.F., Yeaman M.R. The γ-core motif correlates with antimicrobial activity in cysteine-containing kaliocin-1 originating from transferrins // Biochim. Biophys. Acta. 2007. Vol. 1768, No. 11. P. 2862–2872. doi: 10.1016/j.bbamem.2007.07.024
  9. Ellison 3rd R.T., Giehl T.J. Killing of gram-negative bacteria by lactoferrin and lysozyme // J. Clin. Invest. 1991. Vol. 88, No. 4. P. 1080–1091. doi: 10.1172/JCI115407
  10. Hwang S., Chung I.Y., Jo J. et al. Comparison of proliferative effect of human lactoferrin and its proteolytic peptide on normal and transformed epithelial cells // Appl. Biochem. Biotechnol. 2016. Vol. 178. P. 44–57. doi: 10.1007/s12010-015-1857-y
  11. Gonzalez-Chavez S.A., Arevalo-Gallegos S., Rascon-Cruz Q. Lactoferrin: structure, function and applications // Int. J. Antimicrob. Agents. 2009. Vol. 33, No. 4. P. 301.e1–301.e8. doi: 10.1016/j.ijantimicag.2008.07.020
  12. Baker E.N., Baker H.M. Molecular structure, binding properties and dynamics of lactoferrin // Cell. Mol. Life Sci. 2005. Vol. 62, No. 22. P. 2531–2539. doi: 10.1007/s00018-005-5368-9
  13. Furmanski P., Li Z., Fortuna M.B. et al. Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that possess ribonuclease activity and lack iron-binding capacity // J. Exp. Med. 1989. Vol. 170, No. 2. P. 415–429. doi: 10.1084/jem.170.2.415
  14. Baker E.N. Structure and reactivity of transferrins // Adv. Inorg. Chem. 1994. Vol. 41. P. 389–463. doi: 10.1016/S0898-8838(08)60176-2
  15. Liu D., Wang X., Zhang Z., Teng C.T. An intronic alternative promoter of the human lactoferrin gene is activated by Ets // Biochem. Biophys. Res. Commun. 2003. Vol. 301, No. 2. P. 472–479. doi: 10.1016/S0006-291X(02)03077-2
  16. Mariller C., Hardivillé S., Hoedt E. et al. Delta-lactoferrin, an intracellular lactoferrin isoform that acts as a transcription factor // Biochem. Cell. Biol. 2012. Vol. 90, No. 3. P. 307–319. doi: 10.1139/o11-070
  17. Rubartelli A., Sitia R. Entry of exogenous polypeptides into the nucleus of living cells: facts and speculations // Trends Cell. Biol. 1995. Vol. 5, No. 11. P. 409–412. doi: 10.1016/S0962-8924(00)89093-5
  18. Kanyshkova T.G., Semenov D.V., Buneva V.N., Nevinsky G.A. Human milk lactoferrin binds two DNA molecules with different affinities // FEBS Lett. 1999. Vol. 451, No. 3. P. 235–237. doi: 10.1016/S0014-5793(99)00579-7
  19. Verduci E., Banderali G., Barberi S. et al. Epigenetic effects of human breast milk // Nutrients. 2014. Vol. 6, No. 4. P. 1711–1724. doi: 10.3390/nu6041711
  20. Lebedev D.V., Zabrodskaya Y.A., Pipich V. et al. Effect of alpha-lactalbumin and lactoferrin oleic acid complexes on chromatin structural organization // Biochem. Biophys. Res. Commun. 2019. Vol. 520, No. 1. P. 136–139. doi: 10.1016/j.bbrc.2019.09.116
  21. Zadvornyi T.V., Lukianova N.Y., Borikun T.V., Chekhun V.F. Effects of exogenous lactoferrin on phenotypic profile and invasiveness of human prostate cancer cells (DU145 and LNCaP) in vitro // Exp. Oncol. 2018. Vol. 40, No. 3. P. 184–189.
  22. Danforth D.N., Sgagias M.K. Interleukin-1α and interleukin-6 act additively to inhibit growth of MCF-7 breast cancer cells in vitro // Cancer Res. 1993. Vol. 53, No. 7. P. 1538–1545.
  23. Mishra S., Tai Q., Gu X. et al. Estrogen and estrogen receptor alpha promotes malignancy and osteoblastic tumorigenesis in prostate cancer // Oncotarget. 2015. Vol. 6, No. 42. P. 44388–44402. doi: 10.18632/oncotarget.6317
  24. Fleisch A.F., Wright R.O., Baccarelli A.A. Environmental epigenetics: a role in endocrine disease? // J. Mol. Endocrinol. 2012. Vol. 49, No. 2. P. R61–R67. doi: 10.1530/JME-12-0066
  25. Kovács T., Szabó-Meleg E., Ábrahám I. Estradiol-induced epigenetically mediated mechanisms and regulation of gene expression // Int. J. Mol. Sci. 2020. Vol. 21, No. 9. P. 3177. doi: 10.3390/ijms21093177
  26. Ariazi E., Taylor J., Black M. et al. A new role for ERα: Silencing via DNA methylation of basal, stem cell, and EMT genes // Mol. Cancer Res. 2017. Vol. 15, No. 2. P. 152–164. doi: 10.1158/1541-7786.mcr-16-0283
  27. Jin X., Li Y., Guo Y. et al. ERα is required for suppressing OCT4-induced proliferation of breast cancer cells via DNMT1/ISL1/ERK axis // Cell. Prolif. 2019. Vol. 52, No. 4. P. e12612. doi: 10.1111/cpr.12612
  28. Wang L., Ozark P., Smith E. et al. TET2 coactivates gene expression through demethylation of enhancers // Sci. Adv. 2018. Vol. 4, No. 11. P. eaau6986. doi: 10.1126/sciadv.aau6986
  29. Reale E., Taverna D., Cantini L. et al. Investigating the epi-miRNome: identification of epi-miRNAs using transfection experiments // Epigenomics. 2019. Vol. 11, No. 14. P. 1581–1599. doi: 10.2217/epi-2019-0050
  30. Di Croce L., Helin K. Transcriptional regulation by Polycomb group proteins // Nat. Struct. Mol. Biol. 2013. Vol. 20, No. 10. P. 1147–1155. doi: 10.1038/nsmb.2669
  31. Nuytten M., Beke L., Van Eynde A. et al. The transcriptional repressor NIPP1 is an essential player in EZH2-mediated gene silencing // Oncogene. 2008. Vol. 27, No. 10. P. 1449–1460. doi: 10.1038/sj.onc.1210774
  32. Williams L.V., Veliceasa D., Vinokour E., Volpert O.V. miR-200b inhibits prostate cancer EMT, growth and metastasis // PLoS One. 2013. Vol. 8, No. 12. P. e83991. doi: 10.1371/journal.pone.0083991
  33. Kojima S., Chiyomaru T., Kawakami K. et al. Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer // Br. J. Cancer. 2012. Vol. 106, No. 2. P. 405–413. doi: 10.1038/bjc.2011.462
  34. Chavali V., Tyagi S.C., Mishra P.K. MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes // Biochem. Biophys. Res. Commun. 2012. Vol. 425, No. 3. P. 668–672. doi: 10.1016/j.bbrc.2012.07.105
  35. Liu J., Zhang X., Huang Y. et al. miR-200b and miR-200c co-contribute to the cisplatin sensitivity of ovarian cancer cells by targeting DNA methyltransferases // Oncol. Lett. 2019. Vol. 17, No. 2. P. 1453–1460. doi: 10.3892/ol.2018.9745
  36. Guo C., Yang Z.-H., Zhang S. et al. Intranasal lactoferrin enhances α-secretase-dependent amyloid precursor protein processing via the ERK1/2-CREB and HIF-1α pathways in an Alzheimer’s disease mouse model // Neuropsychopharmacology. 2017. Vol. 42, No. 13. P. 2504–2515. doi: 10.1038/npp.2017.8
  37. Malm T., Koistinaho J., Kanninen K. Utilization of APPswe/PS1dE9 transgenic mice in research of Alzheimer’s disease: Focus on gene therapy and cell-based therapy applications // Int. J. Alzheimers Dis. 2011. P. 517160. doi: 10.4061/2011/517160
  38. Taher N., McKenzie C., Garrett R. et al. Amyloid-β alters the DNA methylation status of cell-fate genes in an Alzheimer’s disease model // J. Alzheimers Dis. 2014. Vol. 38, No. 4. P. 831–844. doi: 10.3233/JAD-131061
  39. Grau A.J., Willig V., Fogel W., Werle E. Assessment of plasma lactoferrin in Parkinson’s disease // Mov. Disord. 2001. Vol. 16, No. 1. P. 131–134. doi: 10.1002/1531-8257(200101)16:1<131::aid-mds1008>3.0.co;2-o
  40. Sokolov A.V., Miliukhina I.V., Belsky Yu.P. et al. Potential role of lactoferrin in early diagnostics and treatment of Parkinson disease // Medical Academic Journal. 2020. Vol. 20, No. 1. P. 37–44. doi: 10.17816/MAJ33848
  41. Zalutski I.V., Lukianova N.Y., Storchai D.M. et al. Influence of exogenous lactoferrin on the oxidant/ antioxidant balance and molecular profile of hormone receptor-positive and -negative human breast cancer cells in vitro // Exp. Oncol. 2017. Vol. 39, No. 2. P. 106–111.
  42. Zakharova E., Kostevich V., Sokolov A., Vasilyev V. Human apo-lactoferrin as a physiological mimetic of hypoxia stabilizes hypoxia-inducible factor-1 alpha // Biometals. 2012. Vol. 25, No. 6. P. 1247–1259. doi: 10.1007/s10534-012-9586-y
  43. Luo W., Chang R., Zhong J. et al. Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109, No. 49. P. E3367–E3376. doi: 10.1073/pnas.1217394109
  44. Skowronski K., Dubey S., Rodenhiser D., Coomber B. Ischemia dysregulates DNA methyltransferases and p16INK4a methylation in human colorectal cancer cells // Epigenetics. 2010. Vol. 5, No. 6. P. 547–556. doi: 10.4161/epi.5.6.12400
  45. Patterson A., Chen M., Xue Q. et al. Chronic prenatal hypoxia induces epigenetic programming of PKCε gene repression in rat hearts // Circ. Res. 2010. Vol. 107, No. 3. P. 365–373. doi: 10.1161/circresaha.110.221259
  46. Thienpont B., Steinbacher J., Zhao H. et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity // Nature. 2016. Vol. 537, No. 7618. P. 63–68. doi: 10.1038/nature19081
  47. Akanji M., Rotimi D., Adeyemi O. Hypoxia-inducible factors as an alternative source of treatment strategy for cancer // Oxid. Med. Cell. Longev. 2019. P. 8547846. doi: 10.1155/2019/8547846
  48. Wang G., Jiang B., Rue E., Semenza G. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92, No. 12. P. 5510–5514. doi: 10.1073/pnas.92.12.5510
  49. Kostevich V., Sokolov A., Zakharova E., Vasilyev V. Apolactoferrin in mother’s milk induces HIF signaling in neonate animals // Am. J. Perinatol. 2018. Vol. 35, No. S 01. P. S1–S26. doi: 10.1055/s-0038-1647102
  50. Bellamy W., Takase M., Wakabayashi H. et al. Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin // J. Appl. Bacteriol. 1992. Vol. 73, No. 6. P. 472–479. doi: 10.1111/j.1365-2672.1992.tb05007.x
  51. Lizzi A., Carnicelli V., Clarkson M. et al. Lactoferrin derived peptides: mechanisms of action and their perspectives as antimicrobial and antitumoral agents // Mini Rev. Med. Chem. 2009. Vol. 9, No. 6. P. 687–695. doi: 10.2174/138955709788452757
  52. Zhang T.-N., Liu N. Effect of bovine lactoferricin on DNA methyltransferase 1 levels in Jurkat T-leukemia cells // J. Dairy Sci. 2010. Vol. 93, No. 9. P. 3925–3930. doi: 10.3168/jds.2009-3024

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Fig. 1. Effect of lactoferrin complexes with oleic acid on chromatin compaction in isolated HeLa nuclei. Lf — lactoferrin; ChLfOA — human lactoferrin with oleic acid

Скачать (122KB)
3. Fig. 2. Effects of estrogen receptor alpha on epigenetics mechanisms. (a) Estrogen receptor alpha has a regulatory effect on DNA methyltransferses, DNA demethylation proteins, and histone modifying enzymes, so that estrogen receptor alpha indirectly could affect chromatin status and genes expression levels. (b) Liganded estrogen receptor alpha-induced methylation mechanism. Step 1: Liganded estrogen receptor alpha binds to the estrogen responsive element in the DNA. Step 2: Estrogen receptor alpha recruits polycomb repressive complex 2, histone deacetylase 1, and enhancer of zeste homolog 2. Step 3: Histone deacetylase removes acetyl groups from the histone 3’s 27th lysine residue, and then EZH2 places three methyl groups on H3K27. Step 4: DNA methyltransferase 3B recognizes the methylated H3K27 and methylates the cytosine in a CpG island. ERα — estrogen receptor alpha; DNMT — DNA methyltransferase; HDAC — histone deacetylase 1; PRC2 — polycomb repressive complex 2; EZH2 — enhancer of zeste homolog 2; H3K27 — histone 3’s 27th lysine residue; AC — acetyl groups; 3Me — three methyl groups

Скачать (207KB)
4. Fig. 3. Effect of lactoferrin on human prostate cancer cell lines DU145 and LNCaP (based on the results of Reale, Di Croce, Nuytten, Zadvornyi, Chavali, Liu and their colleagues [29–31, 21, 34, 35]). (a) Recombinant human lactoferrin causes an increase in the expression of miRNA-155 and miRNA-205 in the DU145 and LNCaP cell lines. These miRNAs were involved in the change of epigenetic status of cells. (b) miR-133a and miR-200b up-regulation after lactoferrin exposure in DU145 cell line leads to many changes in epigenetic statues. Lf — lactoferrin; ERα — estrogen receptor alpha; PR — progesterone receptor; DNMT — DNA methyltransferase; PRC2 — polycomb repressive complex 2; EZH2 — enhancer of zeste homolog 2; HDAC — histone deacetylase

Скачать (478KB)
5. Fig. 4. Effect of lactoferrin on DNA methylation in Jurkat-T leukemia cells, neuroblastoma 2a cells, and breast cancer cell lines. Jurkat-T leukemia cells exposure to lactoferricin B leads to reducing the half-life, expression, and stability of DNMT1. Human lactoferrin reduces β-amyloid generation in neuroblastoma 2a cells, which in turn significantly affects DNA methylation in certain loci. Hypoxia mediated by human lactoferrin exposure in breast cancer cell lines triggers many mechanisms related to epigenetic means (depending on cell/tissue type). Hypoxia down regulates DNMT1, DNMT3A and TET enzymes, and which in the end will affect DNA methylation. Hypoxia-inducible factor 1α mediates recruitment of jumonji domain containing protein 2C to the hypoxia response elements of HIF-1 target genes that decreases trimethylation of histone H3 at lysine 9, and enhances HIF-1 binding to hypoxia response elements, thereby activating transcription of these genes. DNMT — DNA methyltransferase; TET enzymes — ten-eleven translocation enzymes (DNA demethylation enzymes); HIF-1α — hypoxia-inducible factor 1α; JMJD2C — jumonji domain containing protein 2C; HRE — hypoxia response element

Скачать (351KB)

© Шарруф К.А., Сучкова И.О., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».