Роль моноцитов в иммунопатогенезе инфекционно-воспалительных заболеваний: от теории к практике
- Авторы: Трулев А.С.1, Борисов А.Г.2, Кудрявцев И.В.1, Лазанович В.А.3, Савченко А.А.2
-
Учреждения:
- Институт экспериментальной медицины
- Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук»
- Клиника ЕВРОМЕД
- Выпуск: Том 24, № 4 (2024)
- Страницы: 9-32
- Раздел: Аналитический обзор
- URL: https://bakhtiniada.ru/MAJ/article/view/284814
- DOI: https://doi.org/10.17816/MAJ634763
- ID: 284814
Цитировать
Аннотация
Моноциты — это циркулирующие клетки периферической крови, которые дифференцируются из гемопоэтических стволовых клеток красного костного мозга. Они служат первой линией защиты организма от различных патогенов и участвуют во всех типах воспалительных реакций при ответе на проникновение в организм вирусов, бактерий, грибов и гельминтов. Долгое время моноциты считались однородной группой клеток, но с развитием проточной цитометрии было показано, что их можно разделить на три субпопуляции по степени экспрессии поверхностных молекул CD14 и CD16: «классические» (CD14++CD16–), «провоспалительные» (CD14+CD16++) и «переходные» (CD14++CD16+). В настоящем обзоре рассмотрены различные механизмы реализации функциональной активности различных субпопуляций моноцитов и особенности их нарушения при различных вирусных заболеваниях, бактериальных инфекциях и сепсисе.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Андрей Сергеевич Трулев
Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: trulioff@gmail.com
ORCID iD: 0000-0002-7495-446X
SPIN-код: 8688-7506
канд. биол. наук, старший научный сотрудник отдела иммунологии
Россия, 197022, Санкт-Петербург, ул. Академика Павлова, д. 12Александр Геннадьевич Борисов
Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук»
Email: 2410454@mail.ru
ORCID iD: 0000-0001-6930-3243
SPIN-код: 9570-2254
Научно-исследовательский институт медицинских проблем Севера, канд. мед. наук. ведущий научный сотрудник лаборатории клеточно-молекулярной физиологии и патологии
Россия, КрасноярскИгорь Владимирович Кудрявцев
Институт экспериментальной медицины
Email: igorek1981@yandex.ru
ORCID iD: 0000-0001-7204-7850
SPIN-код: 4903-7636
канд. биол. наук, заведующий лабораторией клеточной иммунологии отдела иммунологии
Россия, 197022, Санкт-Петербург, ул. Академика Павлова, д. 12Владимир Анатольевич Лазанович
Клиника ЕВРОМЕД
Email: immuno2003@mail.ru
ORCID iD: 0000-0003-0354-4890
SPIN-код: 1037-4447
канд. мед. наук, врач аллерголог-иммунолог
Россия, КраснодарАндрей Анатольевич Савченко
Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук»
Email: aasavchenko@yandex.ru
ORCID iD: 0000-0001-5829-672X
SPIN-код: 3132-8260
Научно-исследовательский институт медицинских проблем Севера, д-р мед. наук, заведующий лабораторией клеточно-молекулярной физиологии и патологии
Россия, КрасноярскСписок литературы
- Каспаров Э.В., Савченко А.А., Кудлай Д.А., и др. Клиническая иммунология. Реабилитация иммунной системы. Красноярск: Версона, 2022. 196 с.
- Gren S.T., Grip O. Role of monocytes and intestinal macrophages in Crohn’s disease and ulcerative colitis // Inflamm Bowel Dis. 2016. Vol. 22, N 8. С. 1992–1998. doi: 10.1097/MIB.0000000000000824
- Wallis Z.K., Williams K.C. Monocytes in HIV and SIV infection and aging: implications for inflamm-aging and accelerated aging // Viruses. 2022. Vol. 14, N 2. С. 409. doi: 10.3390/v14020409
- Чумакова С.П., Уразова О.И., Денисенко О.А., и др. Цитокины в механизмах регуляции моноцитопоэза при ишемической болезни сердца // Гематология и трансфузиология. 2022. Т. 67, № 4. С. 511–524 . EDN: FDACYA doi: 10.35754/0234-5730-2022-67-4-511-524
- Ożańska A., Szymczak D., Rybka J. Pattern of human monocyte subpopulations in health and disease // Scand J Immunol. 2020. Vol. 92, N 1. P. e12883. doi: 10.1111/sji.12883
- Liu S., Szatmary P., Lin J.W., et al. Circulating monocytes in acute pancreatitis // Front Immunol. 2022. Vol. 13. P. 1062849. doi: 10.3389/fimmu.2022.1062849
- Orozco S.L., Canny S.P., Hamerman J.A. Signals governing monocyte differentiation during inflammation // Curr Opin Immunol. 2021. Vol. 73. P. 16–24. doi: 10.1016/j.coi.2021.07.007
- Bettke J.A., Tam J.W., Montoya V., et al. Inflammatory monocytes promote granuloma-mediated control of persistent salmonella infection // Infect Immun. 2022. Vol. 90, N 4. P. e0007022. doi: 10.1128/iai.00070-22
- Xiong H., Pamer E.G. Monocytes and infection: modulator, messenger and effector // Immunobiology. 2015. Vol. 220, N 2. P. 210–214. doi: 10.1016/j.imbio.2014.08.007
- Samstein M., Schreiber H.A., Leiner I.M., et al. Essential yet limited role for CCR2 + inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming // Elife. 2013. Vol. 2. P. e01086. doi: 10.7554/eLife.01086
- Zhang Y., Khairallah C., Sheridan B.S., et al. CCR2 + inflammatory monocytes are recruited to Yersinia pseudotuberculosis pyogranulomas and dictate adaptive responses at the expense of innate immunity during oral infection // Infect Immun. 2018. Vol. 86, N 3. P. e00782–17. doi: 10.1128/IAI.00782-17
- Auger J.P., Rivest S., Benoit-Biancamano M.O., et al. Inflammatory monocytes and neutrophils regulate Streptococcus suis -induced systemic inflammation and disease but are not critical for the development of central nervous system disease in a mouse model of infection // Infect Immun. 2020. Vol. 88, N 3. P. e00787–19. doi: 10.1128/IAI.00787-19
- Montaño D.E., Hartung S., Wich M., et al. The TLR-NF-kB axis contributes to the monocytic inflammatory response against a virulent strain of Lichtheimia corymbifera , a causative agent of invasive mucormycosis // Front Immunol. 2022. Vol. 13. P. 882921. doi: 10.3389/fimmu.2022.882921
- Sabbatinelli J., Matacchione G., Giuliani A., et al. Circulating biomarkers of inflammaging as potential predictors of COVID-19 severe outcomes // Mech Ageing Dev. 2022. Vol. 204. P. 111667. doi: 10.1016/j.mad.2022.111667
- Passlick B., Flieger D., Ziegler-Heitbrock H.W. Identification and characterization of a novel monocyte subpopulation in human peripheral blood // Blood. 1989. Vol. 74, N 7. P. 2527–2534. doi: 10.1182/blood.V74.7.2527.2527
- Ziegler-Heitbrock H.W., Passlick B., Flieger D. The monoclonal antimonocyte antibody My4 stains B lymphocytes and two distinct monocyte subsets in human peripheral blood // Hybridoma. 1988. Vol. 7, N 6. P. 521–527. doi: 10.1089/hyb.1988.7.521
- Wright S.D., Ramos R.A., Tobias P.S., et al. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein // Science. 1990. Vol. 249, N 4975. P. 1431–1433. doi: 10.1126/science.1698311
- Li L., Cai W., Guo P., et al. Characteristics and clinical significance of plasma IL-18, sCD14, and sCD163 levels in patients with HIV-1 infection // J Med Virol. 2023. Vol. 95, N 1. P. e28223. doi: 10.1002/jmv.28223
- Maddaloni C., De Rose D.U., Santisi A., et al. The emerging role of presepsin (P-SEP) in the diagnosis of sepsis in the critically ill infant: a literature review // Int J Mol Sci. 2021. Vol. 22, N 22. P. 12154. doi: 10.3390/ijms222212154
- Hsieh W.T., Hsu M.H., Lin W.J., et al. Ergosta-7, 9 (11), 22-trien-3β-ol Interferes with LPS docking to LBP, CD14, and TLR4/MD-2 Co-receptors to attenuate the NF-κB inflammatory pathway in vitro and drosophila // Int J Mol Sci. 2021. Vol. 22, N 12. P. 6511. doi: 10.3390/ijms22126511
- Gonzalez J.C., Chakraborty S., Thulin N.K., Wang T.T. Heterogeneity in IgG-CD16 signaling in infectious disease outcomes // Immunol Rev. 2022. Vol. 309, N 1. P. 64–74. doi: 10.1111/imr.13109
- Fall A.K.D.J., Dechavanne C., Sabbagh A., et al. Combined polymorphisms involving the IgG heavy chain and Fc gamma receptors among Fulani and non-Fulani in Benin: implications for the natural protection of young Fulani against Plasmodium falciparum malaria infections // Infect Genet Evol. 2023. Vol. 112. P. 105461. doi: 10.1016/j.meegid.2023.105461
- Nasr A., Aljada A., Hamid O., et al. Significant differences in FcγRIIa , FcγRIIIa and FcγRIIIb genes polymorphism and anti-malarial IgG subclass pattern are associated with severe Plasmodium falciparum malaria in Saudi children // Malar J. 2021. Vol. 20, N 1. P. 376. doi: 10.1186/s12936-021-03901-0
- Shimizu Y., Kohyama M., Yorifuji H., et al. FcγRIIIA-mediated activation of NK cells by IgG heavy chain complexed with MHC class II molecules // Int Immunol. 2019. Vol. 31, N 5. P. 303–314. doi: 10.1093/intimm/dxz010
- Treffers L.W., van Houdt M., Bruggeman C.W., et al. FcγRIIIb restricts antibody-dependent destruction of cancer cells by human neutrophils // Front Immunol. 2019. Vol. 9. P. 3124. doi: 10.3389/fimmu.2018.03124
- Hellman L. Phenotypic and functional heterogeneity of monocytes and macrophages // Int J Mol Sci. 2023. Vol. 24, N 19. P. 14525. doi: 10.3390/ijms241914525
- Williams H., Mack C., Baraz R., et al. Monocyte differentiation and heterogeneity: inter-subset and interindividual differences // Int J Mol Sci. 2023. Vol. 24, N 10. P. 8757. doi: 10.3390/ijms24108757
- Buscher K., Marcovecchio P., Hedrick C.C., Ley K. Patrolling mechanics of non-classical monocytes in vascular inflammation // Front Cardiovasc Med. 2017. Vol. 4. P. 80. doi: 10.3389/fcvm.2017.00080
- Gabriel H., Urhausen A., Brechtel L., et al. Alterations of regular and mature monocytes are distinct, and dependent of intensity and duration of exercise // Eur J Appl Physiol Occup Physiol. 1994. Vol. 69, N 2. P. 179–181. doi: 10.1007/BF00609414
- Slavick A., Furer V., Polachek A., et al. Circulating and synovial monocytes in arthritis and ex-vivo model to evaluate therapeutic modulation of synovial monocytes // Immunol Invest. 2023. Vol. 52, N 7. P. 832–855. doi: 10.1080/08820139.2023.2247438
- Tamene W., Marconi V.C., Abebe M., et al. Differential expression of chemokine receptors on monocytes in TB and HIV S // Heliyon. 2023. Vol. 9, N 6. P. e17202. doi: 10.1016/j.heliyon.2023.e17202
- Bianconi V., Sahebkar A., Atkin S.L., Pirro M. The regulation and importance of monocyte chemoattractant protein-1 // Curr Opin Hematol. 2018. Vol. 25, N 1. P. 44–51. doi: 10.1097/MOH.0000000000000389
- Патышева М.Р., Стахеева М.Н., Ларионова И.В., и др. Моноциты при злокачественных новообразованиях: перспективы и точки приложения для диагностики и терапии // Бюллетень сибирской медицины. 2019. Т. 18, № 1. С. 60–75. EDN: ARRYLN doi: 10.20538/1682-0363-2019-1-60-75
- Jarosova R., Ondrackova P., Leva L., et al. Cytokine expression by CD163 + monocytes in healthy and Actinobacillus pleuropneumoniae -infected pigs // Res Vet Sci. 2022. Vol. 152. P. 1–9. doi: 10.1016/j.rvsc.2022.07.015
- Lee J.G., Jaeger K.E., Seki Y., et al. Human CD36hi monocytes induce Foxp3 + CD25 + T cells with regulatory functions from CD4 and CD8 subsets // Immunology. 2021. Vol. 163, N 3. P. 293–309. doi: 10.1111/imm.13316
- Qu P.F., Li R., Xu C., et al. A clinical pilot study to evaluate CD64 expression on blood monocytes as an indicator of periprosthetic joint infection // J Bone Joint Surg Am. 2020. Vol. 102, N 17. P. e99. doi: 10.2106/JBJS.20.00057
- Lekka K., Marangos M., Roupas N., et al. Evaluation of the activity of neutrophils and monocytes in diabetic patients with sepsis, can surface antigens HLA-DR and CD64 be useful as prognostic factors? // J Clin Med Res. 2020. Vol. 12, N 3. P. 157–164. doi: 10.14740/jocmr4068
- Савченко А.А., Борисов А.Г., Модестов А.А., и др. Фенотипический состав и хемилюминесцентная активность моноцитов у больных почечно-клеточным раком // Медицинская иммунология. 2015. Т. 17, № 2. С. 141–150. EDN: TORDFB doi: 10.15789/1563-0625-2015-2-141-150
- Novais F.O., Nguyen B.T., Beiting D.P., et al. Human classical monocytes control the intracellular stage of Leishmania braziliensis by reactive oxygen species // J Infect Dis. 2014. Vol. 209, N 8. P. 1288–1296. doi: 10.1093/infdis/jiu013
- Zawada A.M., Rogacev K.S., Rotter B., et al. SuperSAGE evidence for CD14 ++ CD16 + monocytes as a third monocyte subset // Blood. 2011. Vol. 118, N 12. P. e50–e61. doi: 10.1182/blood-2011-01-326827
- Cros J., Cagnard N., Woollard K., et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors // Immunity. 2010. Vol. 33, N 3. P. 375–386. doi: 10.1016/j.immuni.2010.08.012
- Urbán-Solano A., Flores-Gonzalez J., Cruz-Lagunas A., et al. High levels of PF4, VEGF-A, and classical monocytes correlate with the platelets count and inflammation during active tuberculosis // Front Immunol. 2022. Vol. 13. P. 1016472. doi: 10.3389/fimmu.2022.1016472
- Lira-Junior R., Holmström S.B., Clark R., et al. S100A12 expression is modulated during monocyte differentiation and reflects periodontitis severity // Front Immunol. 2020. Vol. 11. P. 86. doi: 10.3389/fimmu.2020.00086
- Gaur P., Myles A., Misra R., Aggarwal A. Intermediate monocytes are increased in enthesitis-related arthritis, a category of juvenile idiopathic arthritis // Clin Exp Immunol. 2017. Vol. 187, N 2. P. 234–241. doi: 10.1111/cei.12880
- Connaughton E.P., Naicker S., Hanley S.A., et al. Phenotypic and functional heterogeneity of human intermediate monocytes based on HLA-DR expression // Immunol Cell Biol. 2018. Vol. 5. P. 45. doi: 10.1111/imcb.12032
- Narasimhan P.B., Marcovecchio P., Hamers A.A.J., Hedrick C.C. Nonclassical monocytes in health and disease // Annu Rev Immunol. 2019. Vol. 37. P. 439–456. doi: 10.1146/annurev-immunol-042617-053119
- Marcovecchio P.M., Zhu Y.P., Hanna R.N., et al. Frontline science: Kindlin-3 is essential for patrolling and phagocytosis functions of nonclassical monocytes during metastatic cancer surveillance // J Leukoc Biol. 2020. Vol. 107, N 6. P. 883–892. doi: 10.1002/JLB.4HI0420-098R
- Radzyukevich Y.V., Kosyakova N.I., Prokhorenko I.R. Participation of monocyte subpopulations in progression of experimental endotoxemia (EE) and systemic inflammation // J Immunol Res. 2021. Vol. 2021. P. 1762584. doi: 10.1155/2021/1762584
- Cormican S., Griffin M.D. Human monocyte subset distinctions and function: insights from gene expression analysis // Front Immunol. 2020. Vol. 11. P. 1070. doi: 10.3389/fimmu.2020.01070
- Kapellos T.S., Bonaguro L., Gemünd I., et al. Human monocyte subsets and phenotypes in major chronic inflammatory diseases // Front Immunol. 2019. Vol. 10. P. 2035. doi: 10.3389/fimmu.2019.02035
- Lehman N., Kowalska W., Zarobkiewicz M., et al. Pro- vs. Anti-inflammatory features of monocyte subsets in glioma patients // Int J Mol Sci. 2023. Vol. 24, N 3. P. 1879. doi: 10.3390/ijms24031879
- Калашникова А.А., Ворошилова Т.М., Чиненова Л.В., и др. Субпопуляции моноцитов у здоровых лиц и у пациентов с сепсисом // Медицинская иммунология. 2018. Т. 20, № 6. С. 815–824 . EDN: YOOZML doi: 10.15789/1563-0625-2018-6-815-824
- Sampath P., Moideen K., Ranganathan U.D., Bethunaickan R. Monocyte subsets: phenotypes and function in tuberculosis infection // Front Immunol. 2018. Vol. 9. P. 1726. doi: 10.3389/fimmu.2018.01726
- Rambaran S., Maseko T.G., Lewis L., et al. Blood monocyte and dendritic cell profiles among people living with HIV with Mycobacterium tuberculosis co-infection // BMC Immunol. 2023. Vol. 24, N 1. P. 21. doi: 10.1186/s12865-023-00558-z
- Zhang M.L., Jiang Y.F., Wang X.R., et al. Different phenotypes of monocytes in patients with new-onset mild acute pancreatitis // World J Gastroenterol. 2017. Vol. 23, N 8. P. 1477–1488. doi: 10.3748/wjg.v23.i8.1477
- Zheng J., Fan J., Huang C., et al. Dynamic detection of monocyte subsets in peripheral blood of patients with acute hypertriglyceridemic pancreatitis // Gastroenterol Res Pract. 2019. Vol. 2019. P. 5705782. doi: 10.1155/2019/5705782
- Zhang M., Ding L., Wang X., et al. Circulating CD14 + CD163 + CD115 + M2 monocytes are associated with the severity of new onset severe acute pancreatitis in Chinese patients // Int Immunopharmacol. 2018. Vol. 57. P. 181–189. doi: 10.1016/j.intimp.2018.02.018
- Grainger J.R., Wohlfert E.A., Fuss I.J., et al. Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection // Nat Med. 2013. Vol. 19, N 6. P. 713–721. doi: 10.1038/nm.3189
- Yang J., Qiao M., Li Y., et al. Expansion of a population of large monocytes (atypical monocytes) in peripheral blood of patients with acute exacerbations of chronic obstructive pulmonary diseases // Mediators Inflamm. 2018. Vol. 2018. P. 9031452. doi: 10.1155/2018/9031452
- Gudenschwager Basso E.K., Ju J., Soliman E., et al. Immunoregulatory and neutrophil-like monocyte subsets with distinct single-cell transcriptomic signatures emerge following brain injury // J Neuroinflammation. 2024. Vol. 21, N 1. P. 41. doi: 10.1186/s12974-024-03032-8
- Ikeda N., Kubota H., Suzuki R., et al. The early neutrophil-committed progenitors aberrantly differentiate into immunoregulatory monocytes during emergency myelopoiesis // Cell Rep. 2023. Vol. 42, N 3. P. 112165. doi: 10.1016/j.celrep.2023.112165
- Wiencke J.K., Nissen E., Koestler D.C., et al. Enrichment of a neutrophil-like monocyte transcriptional state in glioblastoma myeloid suppressor cells // Res Sq [Preprint]. 2023:rs.3.rs–3793353. doi: 10.21203/rs.3.rs-3793353/v1
- Brown B., Ojha V., Fricke I., et al. Innate and adaptive immunity during SARS-CoV-2 infection: biomolecular cellular markers and mechanisms // Vaccines (Basel). 2023. Vol. 11, N 2. P. 408. doi: 10.3390/vaccines11020408
- Kudryavtsev I., Rubinstein A., Golovkin A., et al. Dysregulated immune responses in SARS-CoV-2-infected patients: a comprehensive overview // Viruses. 2022. Vol. 14, N 5. P. 1082. doi: 10.3390/v14051082
- Zhang D., Guo R., Lei L., et al. Frontline Science: COVID-19 infection induces readily detectable morphologic and inflammation-related phenotypic changes in peripheral blood monocytes // J Leukoc Biol. 2021. Vol. 109, N 1. P. 13–22. doi: 10.1002/JLB.4HI0720-470R
- Zhou Z., Ren L., Zhang L., et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients // Cell Host Microbe. 2020. Vol. 27, N 6. P. 883–890.e2. doi: 10.1016/j.chom.2020.04.017
- Mann E.R., Menon M., Knight S.B., et al. Longitudinal immune profiling reveals key myeloid signatures associated with COVID -19 // Sci Immunol. 2020. Vol. 5, N 51. P. eabd6197. doi: 10.1126/sciimmunol.abd6197
- Giamarellos-Bourboulis E.J., Netea M.G., Rovina N., et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure // Cell Host Microbe. 2020. Vol. 27, N 6. P. 992–1000.e3 . doi: 10.1016/j.chom.2020.04.009
- Kuri-Cervantes L., Pampena M.B., Meng W., et al. Comprehensive mapping of immune perturbations associated with severe COVID-19 // Sci Immunol. 2020. Vol. 5, N 49. P. eabd7114. doi: 10.1126/sciimmunol.abd7114
- Arunachalam P.S., Wimmers F., Mok C.K.P., et al. Systems biological assessment of immunity to mild versus severe COVID -19 infection in humans // Science. 2020. Vol. 369, N 6508. P. 1210–1220 . doi: 10.1126/science.abc6261
- Guo C., Li B., Ma H., et al. Single-cell analysis of two severe COVID -19 patients reveals a monocyte-associated and tocilizumab-responding cytokine storm // Nat Commun. 2020. Vol. 11, N 1. P. 3924. doi: 10.1038/s41467-020-17834-w
- Guilliams M., Mildner A., Yona S. Developmental and functional heterogeneity of monocytes // Immunity. 2018. Vol. 49, N 4. P. 595–613. doi: 10.1016/j.immuni.2018.10.005
- Laing A.G., Lorenc A., Del Molino Del Barrio I., et al. A dynamic COVID-19 immune signature includes associations with poor prognosis // Nat Med. 2020. Vol. 26, N 10. P. 1623–1635. doi: 10.1038/s41591-020-1038-6
- Wilk A.J., Rustagi A., Zhao N.Q., et al. A single-cell atlas of the peripheral immune response in patients with severe COVID -19 // Nat Med. 2020. Vol. 26, N 7. P. 1070–1076. doi: 10.1038/s41591-020-0944-y
- Silvin A., Chapuis N., Dunsmore G., et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19 // Cell. 2020. Vol. 182, N 6. P. 1401–1418.e18. doi: 10.1016/j.cell.2020.08.002
- Chilunda V., Martinez-Aguado P., Xia L.C., et al. Transcriptional changes in CD16 + monocytes may contribute to the pathogenesis of COVID-19 // Front Immunol. 2021. Vol. 12. P. 665773. doi: 10.3389/fimmu.2021.665773
- Schulte-Schrepping J., Reusch N., Paclik D., et al. Suppressive myeloid cells are a hallmark of severe COVID-19 // MedRxiv. 2020. doi: 10.1101/2020.06.03.20119818
- Gómez-Rial J., Currás-Tuala M.J., Rivero-Calle I., et al. Increased serum levels of sCD14 and sCD163 indicate a preponderant role for monocytes in COVID-19 immunopathology // Front Immunol. 2020. Vol. 11. P. 560381. doi: 10.3389/fimmu.2020.560381
- Monneret G., Lepape A., Voirin N., et al. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock // Intensive Care Med. 2006. Vol. 32. P. 1175–1183 . doi: 10.1007/s00134-006-0204-8
- Bronte V., Brandau S., Chen S.H., et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards // Nat Commun. 2016. Vol. 7, N 1. P. 12150. doi: 10.1038/ncomms12150
- Xu G., Qi F., Li H., et al. The differential immune responses to COVID-19 in peripheral and lung revealed by single-cell RNA sequencing // Cell Discov. 2020. Vol. 6, N 1. P. 73. doi: 10.1038/s41421-020-00225-2
- Hopkins F.R., Govender M., Svanberg C., et al. Major alterations to monocyte and dendritic cell subsets lasting more than 6 months after hospitalization for COVID-19 // Front Immunol. 2023. Vol. 13. P. 1082912. doi: 10.3389/fimmu.2022.1082912
- Ohno Y., Kitamura H., Takahashi N., et al. IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4 + T cells // Cancer Immunol Immunother. 2016. Vol. 65. P. 193–204. doi: 10.1007/s00262-015-1791-4
- Ивашкин В.Т., Чуланов В.П., Мамонова Н.А., и др. Клинические рекомендации Российского общества по изучению печени, Российской гастроэнтерологической ассоциации, Национального научного общества инфекционистов по диагностике и лечению хронического вирусного гепатита С // Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2023. Т. 33, № 1. С. 84–124. EDN: IUKGIX doi: 10.22416/1382-4376-2023-33-1-84-124
- Tsukanov V.V., Savchenko A.A., Cherepnin M.A., et al. Association of blood NK cell phenotype with the severity of liver fibrosis in patients with chronic viral hepatitis c with genotype 1 or 3 // Diagnostics. 2024. Vol. 14, N 5. P. 472. doi: 10.3390/diagnostics14050472
- Lee M.H., Chen Y.T., Huang Y.H., et al. Chronic viral hepatitis B and c outweigh MASLD in the associated risk of cirrhosis and HCC // Clin Gastroenterol Hepatol. 2024. Vol. 22, N 6. P. 1275–1285e2. doi: 10.1016/j.cgh.2024.01.045
- Schlaak J.F. Current therapy of chronic viral hepatitis B, C and D // J Pers Med. 2023. Vol. 13, N 6. P. 964. doi: 10.3390/jpm13060964
- Chen C., Cai H., Shen J., et al. Exploration of a hypoxia-immune-related microenvironment gene signature and prediction model for hepatitis C-induced early-stage fibrosis // J Transl Med. 2024. Vol. 22, N 1. P. 116. doi: 10.1186/s12967-024-04912-6
- Ferrasi A.C., Lima S.V.G., Galvani A.F., et al. Metabolomics in chronic hepatitis C: Decoding fibrosis grading and underlying pathways // World J Hepatol. 2023. Vol. 15, N 11. P. 1237–1249. doi: 10.4254/wjh.v15.i11.1237
- Sellau J., Puengel T., Hoenow S., et al. Monocyte dysregulation: consequences for hepatic infections // Semin Immunopathol. 2021. Vol. 43, N 4. P. 493–506. doi: 10.1007/s00281-021-00852-1
- Song H., Tan G., Yang Y., et al. Hepatitis B virus-induced imbalance of inflammatory and antiviral signaling by differential phosphorylation of STAT1 in human monocytes // J Immunol. 2019. Vol. 202, N 8. P. 2266–2275. doi: 10.4049/jimmunol.1800848
- Geng A., Flint E., Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver // Front Netw Physiol. 2022. Vol. 2. P. 937739. doi: 10.3389/fnetp.2022.937739
- Tan-Garcia A., Lai F., Sheng Yeong J.P., et al. Liver fibrosis and CD206 + macrophage accumulation are suppressed by anti-GM-CSF therapy // JHEP Rep. 2019. Vol. 2, N 1. P. 100062. doi: 10.1016/j.jhepr.2019.11.006
- Riad N.M., AbdEl Ghaffar H.A., Mansour R.R., et al. Clinical significance of evaluation of monocytic receptors in patients with hepatitis c virus infection // Viral Immunol. 2023. Vol. 36, N 7. P. 475–483. doi: 10.1089/vim.2022.0180
- Ali F., Hammad R., Kotb F.M., et al. Flow cytometry assessment of monocyte subsets alteration in hepatocellular carcinoma post hepatitis C virus infection // Egypt J Immunol. 2022. Vol. 29, N 4. P. 33–45.
- Леплина О.Ю., Тихонова М.А., Меледина И.В., и др. Субпопуляции циркулирующих моноцитов как потенциальные биомаркеры тяжести заболевания у больных вирусным циррозом печени // Инфекция и иммунитет. 2022, Т. 12, № 3. C. 475–485. EDN: EPFQUA doi: 10.15789/2220-7619-CMS-1810
- Hernández-Sarmiento L.J., Valdés-López J.F., Urcuqui-Inchima S. American-Asian- and African lineages of Zika virus induce differential pro-inflammatory and Interleukin 27-dependent antiviral responses in human monocytes // Virus Res. 2023. Vol. 325. P. 199040. doi: 10.1016/j.virusres.2023.199040
- Michlmayr D., Andrade P., Gonzalez K., et al. CD14 + CD16 + monocytes are the main target of Zika virus infection in peripheral blood mononuclear cells in a paediatric study in Nicaragua // Nat Microbiol. 2017. Vol. 2, N 11. P. 1462–1470. doi: 10.1038/s41564-017-0035-0
- Serman T.M., Gack M.U. Evasion of innate and intrinsic antiviral pathways by the Zika virus // Viruses. 2019. Vol. 11, N 10. P. 970. doi: 10.3390/v11100970
- Савченко А.А., Мартынова Г.П., Иккес Л.А., и др. Изменение субпопуляционного состава и фагоцитарной активности моноцитов у детей с инфекционным мононуклеозом при воздействии GM-CSF in vitro // Инфекция и иммунитет. 2023. Т. 13, № 3. C. 446–456. EDN: OITDKO doi: 10.15789/2220-7619-CII-4666
- Jog N.R., Chakravarty E.F., Guthridge J.M., James J.A. Epstein barr virus interleukin 10 suppresses anti-inflammatory phenotype in human monocytes // Front Immunol. 2018. Vol. 9. P. 2198. doi: 10.3389/fimmu.2018.02198
- Xu X., Zhu N., Zheng J., et al. EBV abortive lytic cycle promotes nasopharyngeal carcinoma progression through recruiting monocytes and regulating their directed differentiation // PLoS Pathog. 2024. Vol. 20, N 1. P. e1011934. doi: 10.1371/journal.ppat.1011934
- Chen M., Yu S., Gao Y., et al. TRAF6-TAK1-IKKβ pathway mediates TLR2 agonists activating “one-step” NLRP3 inflammasome in human monocytes // Cytokine. 2023. Vol. 169. P. 156302. doi: 10.1016/j.cyto.2023.156302
- Dimitrov E., Halacheva K., Minkov G., et al. Prediction of outcome using CD14 ++ CD16 – , CD14 ++ CD16 + and CD14 + CD16 ++ monocyte subpopulations in patients with complicated intra-abdominal infections // Med Microbiol Immunol. 2023. Vol. 212, N 5. P. 381–390. doi: 10.1007/s00430-023-00779-4
- Lauvau G., Loke P., Hohl T.M. Monocyte-mediated defense against bacteria, fungi, and parasites // Semin Immunol. 2015. Vol. 27, N 6. P. 397–409. doi: 10.1016/j.smim.2016.03.014
- Cloots R.H., Sankaranarayanan S., de Theije C.C., et al. Ablation of Arg1 in hematopoietic cells improves respiratory function of lung parenchyma, but not that of larger airways or inflammation in asthmatic mice // Am J Physiol Lung Cell Mol Physiol. 2013. Vol. 305, N 5. P. L364–3L76. doi: 10.1152/ajplung.00341.2012
- Hoenow S., Yan K., Noll J., et al. The properties of proinflammatory Ly6Chi monocytes are differentially shaped by parasitic and bacterial liver infections // Cells. 2022. Vol. 11, N 16. P. 2539. doi: 10.3390/cells11162539
- Andrade-Oliveira V., Foresto-Neto O., Watanabe I.K.M., et al. Inflammation in renal diseases: new and old players // Front Pharmacol. 2019. Vol. 10. P. 1192. doi: 10.3389/fphar.2019.01192
- Biram A., Liu J., Hezroni H., et al. Bacterial infection disrupts established germinal center reactions through monocyte recruitment and impaired metabolic adaptation // Immunity. 2022. Vol. 55, N 3. P. 442–458.e8. doi: 10.1016/j.immuni.2022.01.013
- Park M.Y., Kim H.S., Jeong Y.S., et al. Novel Sca-1 + macrophages modulate the pathogenic progress of endotoxemia // Biochem Biophys Res Commun. 2020. Vol. 533, N 1. P. 83–89. doi: 10.1016/j.bbrc.2020.08.118
- Popescu M., Cabrera-Martinez B., Winslow G.M. TNF-α contributes to lymphoid tissue disorganization and germinal center B Cell suppression during intracellular bacterial infection // J Immunol. 2019. Vol. 203, N 9. P. 2415–2424. doi: 10.4049/jimmunol.1900484
- Wang G., Zhao H., Zheng B., et al. TLR2 promotes monocyte/macrophage recruitment into the liver and microabscess formation to limit the spread of Listeria monocytogenes // Front Immunol. 2019. Vol. 10. P. 1388. doi: 10.3389/fimmu.2019.01388
- McLaughlin P.A., Bettke J.A., Tam J.W., et al. Inflammatory monocytes provide a niche for Salmonella expansion in the lumen of the inflamed intestine // PLoS Pathog. 2019. Vol. 15, N 7. P. e1007847. doi: 10.1371/journal.ppat.1007847
- Shima Y., Masuda T., Miwa N., et al. Monocytes predict prognosis and successful treatment in older patients with miliary tuberculosis // J Clin Tuberc Other Mycobact Dis. 2024. Vol. 35. P. 100437. doi: 10.1016/j.jctube.2024.100437
- Luo M., Zou X., Zeng Q., et al. Monocyte at diagnosis as a prognosis biomarker in tuberculosis patients with anemia // Front Med (Lausanne). 2023. Vol. 10. P. 1141949. doi: 10.3389/fmed.2023.1141949
- Wang W., Wang L.F., Liu Y.Y., et al. Value of the ratio of monocytes to lymphocytes for monitoring tuberculosis therapy // Can J Infect Dis Med Microbiol. 2019. Vol. 2019. P. 3270393. doi: 10.1155/2019/3270393
- Rao Muvva J., Parasa V.R., Lerm M., et al. Polarization of human monocyte-derived cells with vitamin D promotes control of Mycobacterium tuberculosis infection // Front Immunol. 2020. Vol. 10. P. 3157. doi: 10.3389/fimmu.2019.03157
- Venet F., Demaret J., Gossez M., Monneret G. Myeloid cells in sepsis-acquired immunodeficiency // Ann N Y Acad Sci. 2021. Vol. 1499, N 1. P. 3–17. doi: 10.1111/nyas.14333
- Passos S., Carvalho L.P., Costa R.S., Campos T.M. Intermediate monocytes contribute to pathologic immune response in Leishmania braziliensis infections // J Infect Dis. 2015;211(2):274–282 . doi: 10.1093/infdis/jiu439
- Fingerle G., Pforte A., Passlick B., Blumenstein M. The novel subset of CD14 + /CD16 + blood monocytes is expanded in sepsis patients // Blood. 1993. Vol. 82, N 10. P. 3170–3176. doi: 10.1182/blood.V82.10.3170.3170
- Herra C.M., Keane C.T., Whelan A. Increased expression of Fcγ receptors on neutrophils and monocytes may reflect ongoing bacte-rial infection // J Med Microbiol. 1996. Vol. 44. P. 135–140. doi: 10.1099/00222615-44-2-135
- Nockher W.A., Scherberich J.E. Expanded CD14 + CD16 + monocyte subpopulation in patients with acute and chronic infectionsundergoing hemodialysis // Infect Immun. 1998. Vol. 66. P. 2782–2790. doi: 10.1128/iai.66.6.2782-2790.1998
- Liepelt A., Hohlstein P., Gussen H., Differential gene expression in circulating CD14( + ) monocytes indicates the prognosis of critically Ill patients with sepsis // J Clin Med. 2020. Vol. 9, N 1. P. 127. doi: 10.3390/jcm9010127
- Mukherjee R., Kanti Barman P., Kumar Thatoi P., Tripathy R. Non-Classical monocytes display inflammatory features: Validation in sepsis and systemic lupus erythematous // Sci Rep. 2015. Vol. 5. P. 13886. doi: 10.1038/srep13886
- Chung H., Lee J.H., Jo YH., et al. Circulating monocyte counts and its impact on outcomes in patients with severe sepsis including septic shock // Shock. 2019. Vol. 51, N 4. P. 423–429. doi: 10.1097/SHK.0000000000001193
- Ferreira da Mota N.V., Brunialti M.K., Santos S.S. Immunophenotyping of monocytes during human sepsis shows impairment in antigen presentation // Shock. 2018. Vol. 50, N 3. P. 293–300. doi: 10.1097/SHK.0000000000001078
- Skrzeczynska J., Kobylarz K., Hartwich Z., Zembala M. CD14 + CD16 + monocytes in the course of sepsis in neonates and small children: monitoring and functional studies // Scand J Immunol. 2002. Vol. 55. P. 629–638. doi: 10.1046/j.1365-3083.2002.01092.x
- Hortová-Kohoutková M., Lázničková P., Bendíčková K., et al. Differences in monocyte subsets are associated with short-term survival in patients with septic shock // J Cell Mol Med. 2020. Vol. 24, N 21. P. 12504–1251. doi: 10.1111/jcmm.15791
- Лазанович В.А., Маркелова Е.В., Смирнов Г.А., Павлов В.А. TOLL-рецепторы на моноцитах и их клиническая значимость у пациентов с сепсисом // Российский иммунологический журнал. 2014. Т. 8, № 3(17). С. 825–828. EDN: TFFUCD
- Лазанович В.А., Маркелова Е.В., Караулов А.В. Клиническая значимость экспрессии TLR2, TLR4 на клетках миелоидного ряда и сывороточного уровня цитокинов у пациентов с сепсисом // Иммунопатология, аллергология, инфектология. 2015. № 2. С. 71–76. EDN: VAOEDR doi: 10.14427/jipai.2015.2.71
- Greco M., Mazzei A., Palumbo C., et al. Flow cytometric analysis of monocytes polarization and reprogramming from inflammatory to immunosuppressive phase during sepsis // EJIFCC. 2019. Vol. 30, N 4. P. 371–384.
- Ziegler-Heitbrock L. The CD14 + CD16 + blood monocytes: their role ininfection and inflammation // J Leukoc Biol. 2007. Vol. 81, N 3. P. 584–592. doi: 10.1189/jlb.0806510
- Belge K.U., Dayyani F., Horelt A., Siedlar M. The proinflammatory CD14 + CD16 + DR ++ monocytes are a major source of TNF // J Immunol. 2002. Vol. 168. P. 3536–3542. doi: 10.4049/jimmunol.168.7.3536
- Mizuno K., Toma T., Tsukiji H., et al. Selective expansion of CD16highCCR2 – subpopulation of circulating monocytes with preferential production of haem oxygenase (HO)-1 in response to acute inflammation // Clin Exp Immunol. 2005. Vol. 142. P. 461–470 . doi: 10.1111/j.1365-2249.2005.02932.x
- Kamińska J., Lisowska A., Koper-Lenkiewicz O.M., Mikłasz P. Differences in monocyte subsets and monocyte-platelet aggregates in acute myocardial infarction-preliminary results // Am J Med Sci. 2019. Vol. 357, N 5. P. 421–434. doi: 10.1016/j.amjms.2019.02.010
Дополнительные файлы
