Immunohistochemical study of human pineal vessels
- Authors: Sufieva D.A.1, Fedorova E.A.1, Yakovlev V.S.1, Grigorev I.P.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 23, No 2 (2023)
- Pages: 109-118
- Section: Original research
- URL: https://bakhtiniada.ru/MAJ/article/view/253877
- DOI: https://doi.org/10.17816/MAJ352563
- ID: 253877
Cite item
Abstract
BACKGROUND: The pineal gland is a neuroendocrine organ located in the epithalamic area of the brain. By using the melatonin, a pineal hormone, the pineal gland synchronizes the work of the internal physiological systems of the body with the circadian light-darkness cycle. Melatonin is synthesized in pinealocytes, the endocrine cells of the pineal gland, and secreted into the bloodstream. However, the structural features of the blood vessels in the pineal gland are still not well understood.
AIM: The purpose of this study was to elucidate the intraorgan localization and immunohistochemical pattern of the blood vessels of the pineal gland of human, which had not been previously studied.
MATERIALS AND METHODS: In the research, immunohistochemistry methods were applied using two selective markers of blood vessels, the antibodies to von Willebrand factor and type IV collagen. Von Willebrand factor is expressed selectively in endothelial cells that form blood vessels, including small capillaries, while type IV collagen is inherent to the basement membrane that separates the vascular endothelium from the underlying tissue.
RESULTS: The immunohistochemical reaction to both markers clearly visualize the blood vessels of the human pineal gland, which in both cases were observed mainly in the connective tissue septa (trabeculae), or, in the absence of a regular lobular structure, in the connective tissue layers. In lobules surrounded by connective tissue trabeculae and containing a large number of densely packed pinealocytes, von Willebrand factor- and type IV collagen-immunoreactive structures were very rare, and in many cases were not observed. The found phenomenon of distribution of blood vessels in the human pineal gland is described for the first time.
CONCLUSIONS: Since blood vessel markers with well-proven selectivity were used, the results obtained with their usage can be considered reliable; this gives grounds with a high degree of probability to assert that the majority of pinealocytes in the human pineal gland do not have direct contact with blood vessels and, accordingly, cannot secrete melatonin directly into the bloodstream. On the basis of the results obtained, a hypothesis is proposed that the hormone secretion from pinealocytes into blood vessels is mediated by astroglial cells.
Full Text
##article.viewOnOriginalSite##About the authors
Dina A. Sufieva
Institute of Experimental Medicine
Author for correspondence.
Email: dinobrione@gmail.com
ORCID iD: 0000-0002-0048-2981
SPIN-code: 3034-3137
Scopus Author ID: 56479139700
ResearcherId: O-1825-2017
Research Associate, Department of General and Particular Morphology
Russian Federation, Saint PetersburgElena A. Fedorova
Institute of Experimental Medicine
Email: el-fedorova2014@yandex.ru
ORCID iD: 0000-0002-0190-885X
SPIN-code: 5414-4122
Scopus Author ID: 36901775900
ResearcherId: B-1671-2012
Cand. Sci. (Biol.), Research Associate, Department of General and Particular Morphology
Russian Federation, Saint PetersburgVladislav S. Yakovlev
Institute of Experimental Medicine
Email: 1547053@mail.ru
ORCID iD: 0000-0003-2136-6717
SPIN-code: 7524-9870
Research Laboratory Associate, Department of General and Particular Morphology
Russian Federation, Saint PetersburgIgor P. Grigorev
Institute of Experimental Medicine
Email: ipg-iem@yandex.ru
ORCID iD: 0000-0002-3535-7638
SPIN-code: 1306-4860
Scopus Author ID: 7102851509
Cand. Sci. (Biol.), Senior Research Associate, Department of General and Particular Morphology
Russian Federation, Saint PetersburgReferences
- Anisimov VN. Pineal gland, biorhythms and aging of an organism. Progress in Physiological Sciences. 2008;39(4):40–65. (In Russ.)
- Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res. 2011;51(1):1–16. doi: 10.1111/j.1600-079X.2011.00916.x
- Markus RP, Fernandes PA, Kinker GS, et al. Immune-pineal axis – acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol. 2018;175(16):3239–3250. doi: 10.1111/bph.14083
- Norman AW, Henry HL. The Pineal Gland. In: Hormones. 3rd ed. London, England: Academic Press; 2015. P. 351–361. doi: 10.1016/B978-0-08-091906-5.00016-1
- Hodde KC. The vascularization of the rat pineal organ. Prog Brain Res. 1979;52:39–44. doi: 10.1016/S0079-6123(08)62910-6
- Selin YuM. Blood vessels of the epiphysis in comparative-anatomical aspect. Arkh Anat Gistol Embriol. 1977;72(5):90–96. (In Russ.)
- Duvernoy HM, Parratte B, Tatu L, et al. The human pineal gland: Relationships with surrounding structures and blood supply. Neurol Res. 2000;22(8):747–790. doi: 10.1080/01616412.2000.11740753
- Cho ZH, Choi SH, Chi JG, et al. Classification of the venous architecture of the pineal gland by 7T MRI. J Neuroradiol. 2011;38(4):238–241. doi: 10.1016/j.neurad.2011.02.010
- Kahilogullari G, Ugur HC, Comert A, et al. Arterial vascularization of the pineal gland. Childs Nerv Syst. 2013;29(10):1835–1841. doi: 10.1007/s00381-012-2018-z
- Bukreeva I, Junemann O, Cedola A, et al. Investigation of the human pineal gland 3D organization by X-ray phase contrast tomography. J Struct Biol. 2020;212(3):107659. doi: 10.1016/j.jsb.2020.107659
- Korzhevskii DE, Kirik OV, Sukhorukova EG, et al. Von Willebrand factor of endotheliocytes of blood vessels and its use in the course of immunomorphologycal research. Medical Academic Journal. 2017;17(1):34–40. (In Russ.) doi: 10.17816/MAJ17134-40
- Pusztaszeri MP, Seelentag W, Bosman FT. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem. 2006;54(4):385–395. doi: 10.1369/jhc.4A6514.2005
- Braak H, Feldengut S, Kassubek J, et al. Two histological methods for recognition and study of cortical microinfarcts in thick sections. Eur J Histochem. 2018;62(4):2989. doi: 10.4081/ejh.2018.2989
- Xu L, Nirwane A, Yao Y. Basement membrane and blood-brain barrier. Stroke Vasc Neurol. 2018;4(2):78–82. doi: 10.1136/svn-2018-000198
- Grigorev IP, Korzhevskii DE. Current technologies for fixation of biological material for immunohistochemical analysis (review). Modern technologies in medicine. 2018;10(2):156–165. doi: 10.17691/stm2018.10.2.19
- Morfologicheskaya diagnostika. Podgotovka materiala dlya gistologicheskogo issledovaniya i elektronnoj mikroskopii. Rukovodstvo. Ed. by D.E. Korzhevskii. Saint Petersburg: SpecLit; 2013. (In Russ.)
- Ageychenko FE. Vozrastnye izmeneniya epifiza. In: Anatomo-fiziologicheskie osobennosti detskogo vozrasta. Moscow; Leningrad: Medizdat; 1935. P. 229–266. (In Russ.)
- Khelimskii AM. Epifiz (shishkovidnaya zheleza). Moscow: Meditsina; 1969. (In Russ.)
- Khavinson VKh, Kvetnoi IM, Ingel’ IE, Mar’ianovich AT. Age-related involution of organs and tissues. Usp Fiziol Nauk. 2003;34(1):78–91. (In Russ.)
- Paltsev MA, Polyakova VO, Kvetnoi IM, et al. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging. Oncotarget. 2016;7(11):11972–11983. doi: 10.18632/oncotarget.7863
- Tapp E, Huxley M. The histological appearance of the human pineal gland from puberty to old age. J Pathol. 1972;108(2):137–144. doi: 10.1002/path.1711080207
- Chumasov EI, Petrova ES, Korzhevskii DE. Structural and functional peculiarities of the endothelium of heart vessels of mature rats according to immunistochemical studies. Regional blood circulation and microcirculation. 2019;18(2):70–77. (In Russ.) doi: 10.24884/1682-6655-2019-18-2-70-77
- Zanetta L, Marcus SG, Vasile J, et al. Expression of Von Willebrand factor, an endothelial cell marker, is up-regulated by angiogenesis factors: a potential method for objective assessment of tumor angiogenesis. Int J Cancer. 2000;85(2):281–288. doi: 10.1002/(SICI)1097-0215(20000115)85:2<281::AID-IJC21>3.0.CO;2-3
- Magaki S, Tang Z, Tung S, et al. The effects of cerebral amyloid angiopathy on integrity of the blood-brain barrier. Neurobiol Aging. 2018;70:70–77. doi: 10.1016/j.neurobiolaging.2018.06.004
- Scharenberg K, Liss L. The histologic structure of the human pineal body. Prog Brain Res. 1965;10:193–217. doi: 10.1016/s0079-6123(08)63452-4
- Calvo J, Boya J. Ultrastructural study of the embryonic development in the rat pineal gland. Anat Rec. 1981;199(4):543–553. doi: 10.1002/ar.1091990410
- Tan DX, Xu B, Zhou X, et al. Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland. Molecules. 2018;23(2):301. doi: 10.3390/molecules23020301
- Chekhonin VP. Development of blood-brain barrier conception. Bulletin of Experimental Biology and Medicine. 2021;171(4):400–412. (In Russ.) doi: 10.47056/0365-9615-2021-171-4-400-412
- Sufieva DA, Fedorova EA, Yakovlev VS, et al. GFAP- and vimentin-containing stuctures in human pineal gland. Tsitologiya. 2023;65(2):1–9. (In Russ.) doi: 10.31857/S0041377123020104
- Taugner R, Schiller A, Rix E. Gap junctions between pinealocytes. A freeze-fracture study of the pineal gland in rats. Cell Tissue Res. 1981;218(2):303–314. doi: 10.1007/BF00210346
- Wartenberg H. The mammalian pineal organ: electron microscopic studies on the fine structure of pinealocytes, glial cells and on the perivascular compartment. Z Zellforsch Mikrosk Anat. 1968;86(1):74–97. doi: 10.1007/BF00340360
- Johnson JE Jr. Fine structural alterations in the aging rat pineal gland. Exp Aging Res. 1980;6(2):189–211. doi: 10.1080/03610738008258357
- Redecker P. Synaptic-like microvesicles in mammalian pinealocytes. Int Rev Cytol. 1999;191:201–255. doi: 10.1016/s0074-7696(08)60160-6
- De Oliveira Marques L, de Carvalho AF, Mançanares ACF, et al. Morphological study of the pineal gland of (crab eater raccoon) Procyon cancrivorus (Cuvier, 1798). Biotemas. 2010;23(2):163–171. (In Brazil) doi: 10.5007/2175-7925.2010v23n2p163
- Favaron PO, Mançanares CA, De Carvalho AF, et al. Gross and microscopic anatomy of the pineal gland in Nasua nasua – coati (Linnaeus, 1766). Anat Histol Embryol. 2008;37(6):464–468. doi: 10.1111/j.1439-0264.2008.00883.x
- Carvalho AF, Ambrosio CE, Miglino MA, et al. Macro-microscopical aspects of the buffalo (Bubalus bubalis Linnaeus, 1758) pineal gland. Biotemas. 2009;22(2):127–135. doi: 10.5007/2175-7925.2009v22n2p127
- Ebada S. Morphological and Immunohistochemical studies on the pineal gland of the donkey (Equus asinus). J Vet Anatomy. 2012;5(1):47–74. doi: 10.21608/jva.2012.44883
- McNulty JA, Fox LM, Lisco SJ. Pinealocyte dense-cored vesicles and synaptic ribbons: a correlative ultrastructural-biochemical investigation in rats and mice. J Pineal Res. 1987;4(1):45–59. doi: 10.1111/j.1600-079x.1987.tb00840.x
- Wohlsein P, Deschl U, Baumgärtner W. Nonlesions, unusual cell types, and postmortem artifacts in the central nervous system of domestic animals. Vet Pathol. 2013;50(1):122–143. doi: 10.1177/0300985812450719
- Karasek M, Reiter RJ. Morphofunctional aspects of the mammalian pineal gland. Microsc Res Tech. 1992;21(2):136–157. doi: 10.1002/jemt.1070210206
Supplementary files
