Antimicrobial activity of the complement system

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The complement system plays a key role in homeostasis and defense against pathogens. The antimicrobial activity of serum against Gram-negative bacteria is usually attributed to the action of the membrane attack complex. However, there is increasing evidence that some other components of the complement system and the products of its activation are also capable of direct killing of both Gram-negative and Gram-positive bacteria. In the course of complement activation, anaphylatoxins C3a, C4a, C5a are produced, which, in addition to their main function, can exhibit a bactericidal effect and disrupt the bacterial membrane. Recent studies have shown that in fish, complement factors D, I, as well as a Ba fragment of factor B, are able to neutralize pathogens. The triggering and amplification of complement usually occurs on the surface of pathogen cells, so the local production of antimicrobial components can potentially make a significant contribution to their elimination. The aim of this review is to outline the role of individual complement members in the elimination of pathogens through direct antibiotic action. The problem of antimicrobial protection in the context of therapeutic complement inhibition is considered.

About the authors

Ekaterina V. Egorova

Institute of Experimental Medicine; Saint Petersburg State University

Email: egorova.ekaterina@internet.ru

Trainee in the General Pathology Laboratory, Department of General Pathology and Pathological Physiology; Undergraduate student in the Faculty of Biology

Russian Federation, Saint Petersburg; Saint Petersburg

Ilia A. Krenev

Institute of Experimental Medicine

Email: il.krenevv13@yandex.ru

Junior Research Associate in the General Pathology Laboratory, Department of General Pathology and Pathological Physiology, PhD student

Russian Federation, Saint Petersburg

Nikita N. Oborin

Institute of Experimental Medicine; Saint Petersburg State University

Email: obnn29@gmail.com

Laboratory Technician, Laboratory of Antitumour Peptide Drugs, Department of General Pathology and Pathological Physiology; Master’s student in the Faculty of Biology

Russian Federation, Saint Petersburg; Saint Petersburg

Mikhail N. Berlov

Institute of Experimental Medicine

Author for correspondence.
Email: berlov.mn@iemspb.ru
ORCID iD: 0000-0001-5191-0467
SPIN-code: 9006-6127
Scopus Author ID: 6505880084
ResearcherId: O-1283-2014

Cand. Sci. (Biol.), Senior Research Associate in the General Pathology Laboratory, Department of General Pathology and Pathological Physiology

Russian Federation, Saint Petersburg

References

  1. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I: Molecular mechanisms of activation and regulation. Front Immunol. 2015;6;262. doi: 10.3389/fimmu.2015.00262
  2. Merle NS, Noe R, Halbwachs-Mecarelli L, et al. Complement system part II: Role in immunity. Front Immunol. 2015;6;257. doi: 10.3389/fimmu.2015.00257
  3. Xie CB, Jane-Wit D, Pober JS. Complement membrane attack complex: new roles, mechanisms of action, and therapeutic targets. Am J Pathol. 2020;190(6):1138–1150. doi: 10.1016/j.ajpath.2020.02.006
  4. Venkatraman Girija U, Gingras AR, Marshall JE, et al. Structural basis of the C1q/C1s interaction and its central role in assembly of the C1 complex of complement activation. Proc Natl Acad Sci USA. 2013;110(34):13916–13920. doi: 10.1073/pnas.1311113110
  5. Goldberg BS, Ackerman ME. Antibody-mediated complement activation in pathology and protection. Immunol Cell Biol. 2020;98(4):305–317. doi: 10.1111/imcb.12324
  6. Matsushita M, Endo Y, Fujita T. Structural and functional overview of the lectin complement pathway: its molecular basis and physiological implication. Arch Immunol Ther Exp (Warsz). 2013;61(4):273–283. doi: 10.1007/s00005-013-0229-y
  7. Harrison RA. The properdin pathway: an “alternative activation pathway” or a “critical amplification loop” for C3 and C5 activation? Semin Immunopathol. 2018;40(1):15–35. doi: 10.1007/s00281-017-0661-x
  8. Windfuhr JP, Alsenz J, Loos M. The critical concentration of C1-esterase inhibitor (C1-INH) in human serum preventing auto-activation of the first component of complement (C1). Mol Immunol. 2005;42(6):657–663. doi: 10.1016/j.molimm.2004.09.025
  9. Paréj K, Dobó J, Závodszky P, Gál P. The control of the complement lectin pathway activation revisited: both C1-inhibitor and antithrombin are likely physiological inhibitors, while α2-macroglobulin is not. Mol Immunol. 2013;54(3–4):415–422. doi: 10.1016/j.molimm.2013.01.009
  10. Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol. 2013;33(6):479–492. doi: 10.1016/j.semnephrol.2013.08.001
  11. Bayly-Jones C, Bubeck D, Dunstone MA. The mystery behind membrane insertion: a review of the complement membrane attack complex. Philos Trans R Soc Lond B Biol Sci. 2017;372(1726):20160221. doi: 10.1098/rstb.2016.0221
  12. Kokryakov VN. Essays on innate immunity. Saint Petersburg: Nauka; 2006. (In Russ.)
  13. Luo Y, Song Y. Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci. 2021;22(21):11401. doi: 10.3390/ijms222111401
  14. Stapels DA, Geisbrecht BV, Rooijakkers SH. Neutrophil serine proteases in antibacterial defense. Curr Opin Microbiol. 2015;23:42–48. doi: 10.1016/j.mib.2014.11.002
  15. Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev. 2010;62(4):726–759. doi: 10.1124/pr.110.002733
  16. Ram S, Lewis LA, Rice PA. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev. 2010;23(4):740–780. doi: 10.1128/CMR.00048-09
  17. Nagata M, Hara T, Aoki T, et al. Inherited deficiency of ninth component of complement: an increased risk of meningococcal meningitis. J Pediatr. 1989;114(2):260–264. doi: 10.1016/s0022-3476(89)80793-0
  18. Joiner KA, Warren KA, Hammer C, Frank MM. Bactericidal but not nonbactericidal C5b-9 is associated with distinctive outer membrane proteins in Neisseria gonorrhoeae. J Immunol. 1985;134(3):1920–1925. doi: 10.4049/jimmunol.134.3.1920
  19. Harriman GR, Esser AF, Podack ER, et al. The role of C9 in complement-mediated killing of Neisseria. J Immunol. 1981;127(6):2386–2390. doi: 10.4049/jimmunol.127.6.2386
  20. Niculescu F, Rus H. Mechanisms of signal transduction activated by sublytic assembly of terminal complement complexes on nucleated cells. Immunol Res. 2001;24(2):191–199. doi: 10.1385/ir:24:2:191
  21. Heesterbeek DA, Bardoel BW, Parsons ES, et al. Bacterial killing by complement requires membrane attack complex formation via surface-bound C5 convertases. EMBO J. 2019;38(4):e99852. doi: 10.15252/embj.201899852
  22. Hadders MA, Bubeck D, Roversi P, et al. Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9. Cell Rep. 2012;1(3):200–207. doi: 10.1016/j.celrep.2012.02.003
  23. Parsons ES, Stanley GJ, Pyne ALB, et al. Single-molecule kinetics of pore assembly by the membrane attack complex. Nat Commun. 2019;10(1):2066. doi: 10.1038/s41467-019-10058-7
  24. Bhakdi S, Tranum-Jensen J. C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore. J Immunol. 1986;136(8):2999–3005. doi: 10.4049/jimmunol.136.8.2999
  25. Sharp TH, Koster AJ, Gros P. Heterogeneous MAC initiator and pore structures in a lipid bilayer by phase-plate cryo-electron tomography. Cell Rep. 2016;15(1):1–8. doi: 10.1016/j.celrep.2016.03.002
  26. Menny A, Serna M, Boyd CM, et al. CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers. Nat Commun. 2018;9(1):5316. doi: 10.1038/s41467-018-07653-5
  27. Franc V, Yang Y, Heck AJ. Proteoform profile mapping of the human serum complement component C9 revealing unexpected new features of N-, O-, and C-Glycosylation. Anal Chem. 2017;89(6):3483–3491. doi: 10.1021/acs.analchem.6b04527
  28. Doorduijn DJ, Rooijakkers SHM, Heesterbeek DAC. How the membrane attack complex damages the bacterial cell envelope and kills gram-negative bacteria. Bioessays. 2019;41(10):e1900074. doi: 10.1002/bies.201900074
  29. Hoover DL, Berger M, Nacy CA, et al. Killing of Leishmania tropica amastigotes by factors in normal human serum. J Immunol. 1984;132(2):893–897. doi: 10.4049/jimmunol.132.2.893
  30. Berends ET, Dekkers JF, Nijland R, et al. Distinct localization of the complement C5b-9 complex on Gram-positive bacteria. Cell Microbiol. 2013;15(12):1955–1968. doi: 10.1111/cmi.12170
  31. Nakamura M, Okada H, Sasaki H, et al. Quantification of the CD55 and CD59, membrane inhibitors of complement on HIV-1 particles as a function of complement-mediated virolysis. Microbiol Immunol. 1996;40(8):561–567. doi: 10.1111/j.1348-0421.1996.tb01109.x
  32. Kim SH, Carney DF, Hammer CH, Shin ML. Nucleated cell killing by complement: effects of C5b-9 channel size and extracellular Ca2+ on the lytic process. J Immunol. 1987;138(5):1530–1536. doi: 10.4049/jimmunol.138.5.1530
  33. Nauta AJ, Daha MR, Tijsma O, et al. The membrane attack complex of complement induces caspase activation and apoptosis. Eur J Immunol. 2002;32(3):783–792. doi: 10.1002/1521-4141(200203)32:3<783::AID-IMMU783>3.0.CO;2-Q
  34. Kim SH, Carney DF, Papadimitriou JC, Shin ML. Effect of osmotic protection on nucleated cell killing by C5b-9: cell death is not affected by the prevention of cell swelling. Mol Immunol. 1989;26(3):323–331. doi: 10.1016/0161-5890(89)90087-4
  35. Pilzer D, Fishelson Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol. 2005;17(9):1239–1248. doi: 10.1093/intimm/dxh300
  36. Brown EJ. Interaction of gram-positive microorganisms with complement. Curr Top Microbiol Immunol. 1985;121:159–187. doi: 10.1007/978-3-642-45604-6_8
  37. Berends ET, Kuipers A, Ravesloot MM, et al. Bacteria under stress by complement and coagulation. FEMS Microbiol Rev. 2014;38(6):1146–1171. doi: 10.1111/1574-6976.12080
  38. Morgan BP, Boyd C, Bubeck D. Molecular cell biology of complement membrane attack. Semin Cell Dev Biol. 2017;72:124–132. doi: 10.1016/j.semcdb.2017.06.009
  39. O’Hara AM, Moran AP, Würzner R, Orren A. Complement-mediated lipopolysaccharide release and outer membrane damage in Escherichia coli J5: requirement for C9. Immunology. 2001;102(3):365–372. doi: 10.1046/j.1365-2567.2001.01198.x
  40. Wang Y, Bjes ES, Esser AF. Molecular aspects of complement-mediated bacterial killing. Periplasmic conversion of C9 from a protoxin to a toxin. J Biol Chem. 2000;275(7):4687–4692. doi: 10.1074/jbc.275.7.4687
  41. Dankert JR, Esser AF. Complement-mediated killing of Escherichia coli: dissipation of membrane potential by a C9-derived peptide. Biochemistry. 1986;25(5):1094–1100. doi: 10.1021/bi00353a023
  42. Dankert JR, Esser AF. Bacterial killing by complement. C9-mediated killing in the absence of C5b-8. Biochem J. 1987;244(2):393–399. doi: 10.1042/bj2440393
  43. Doorduijn DJ, Heesterbeek DAC, Ruyken M, et al. Polymerization of C9 enhances bacterial cell envelope damage and killing by membrane attack complex pores. PLoS Pathog. 2021;17(11):e1010051. doi: 10.1371/journal.ppat.1010051
  44. Heesterbeek DAC, Martin NI, Velthuizen A, et al. Complement-dependent outer membrane perturbation sensitizes Gram-negative bacteria to Gram-positive specific antibiotics. Sci Rep. 2019;9(1):3074. doi: 10.1038/s41598-019-38577-9
  45. Murray GL, Attridge SR, Morona R. Inducible serum resistance in Salmonella typhimurium is dependent on wzz(fepE)-regulated very long O antigen chains. Microbes Infect. 2005;7(13):1296–1304. doi: 10.1016/j.micinf.2005.04.015
  46. Grossman N, Schmetz MA, Foulds J, et al. Lipopolysaccharide size and distribution determine serum resistance in Salmonella montevideo. J Bacteriol. 1987;169(2):856–863. doi: 10.1128/jb.169.2.856-863.1987
  47. Schneider MC, Exley RM, Ram S, et al. Interactions between Neisseria meningitidis and the complement system. Trends Microbiol. 2007;15(5):233–240. doi: 10.1016/j.tim.2007.03.005
  48. Pramoonjago P, Kaneko M, Kinoshita T, et al. Role of TraT protein, an anticomplementary protein produced in Escherichia coli by R100 factor, in serum resistance. J Immunol. 1992;148(3):827–836. doi: 10.4049/jimmunol.148.3.827
  49. Hallström T, Siegel C, Mörgelin M, et al. CspA from Borrelia burgdorferi inhibits the terminal complement pathway. mBio. 2013;4(4):e00481–13. doi: 10.1128/mBio.00481-13
  50. Sjölinder H, Eriksson J, Maudsdotter L, et al. Meningococcal outer membrane protein NhhA is essential for colonization and disease by preventing phagocytosis and complement attack. Infect Immun. 2008;76(11):5412–5420. doi: 10.1128/IAI.00478-08
  51. Blom AM, Hallström T, Riesbeck K. Complement evasion strategies of pathogens-acquisition of inhibitors and beyond. Mol Immunol. 2009;46(14):2808–2817. doi: 10.1016/j.molimm.2009.04.025
  52. Singh B, Su YC, Riesbeck K. Vitronectin in bacterial pathogenesis: a host protein used in complement escape and cellular invasion. Mol Microbiol. 2010;78(3):545–560. doi: 10.1111/j.1365-2958.2010.07373.x
  53. Wat JM, Foley JH, Krisinger MJ, et al. Polyphosphate suppresses complement via the terminal pathway. Blood. 2014;123(5):768–776. doi: 10.1182/blood-2013-07-515726
  54. Zhang Q, Li Y, Tang CM. The role of the exopolyphosphatase PPX in avoidance by Neisseria meningitidis of complement-mediated killing. J Biol Chem. 2010;285(44):34259–34268. doi: 10.1074/jbc.M110.154393
  55. Umnyakova ES, Pashinskaya LD, Krenev IA, et al. Diseases associated with complement system dysregulation and the prospects of their treatment. Medical Academic Journal. 2018;18(3):7–16. (In Russ.) doi: 10.17816/MAJ1837-16
  56. Alper CA. A history of complement genetics. Exp Clin Immunogenet. 1998;15(4):203–212. doi: 10.1159/000019074
  57. Wessels MR, Butko P, Ma M, et al. Studies of group B streptococcal infection in mice deficient in complement component C3 or C4 demonstrate an essential role for complement in both innate and acquired immunity. Proc Natl Acad Sci USA. 1995;92(25):11490–11494. doi: 10.1073/pnas.92.25.11490
  58. Xu Y, Yu Y, Zhang X, et al. Molecular characterization and expression analysis of complement component 3 in dojo loach (Misgurnus anguillicaudatus). Fish Shellfish Immunol. 2018;72:484–493. doi: 10.1016/j.fsi.2017.11.022
  59. Kerr AR, Paterson GK, Riboldi-Tunnicliffe A, Mitchell TJ. Innate immune defense against pneumococcal pneumonia requires pulmonary complement component C3. Infect Immun. 2005;73(7):4245–4252. doi: 10.1128/IAI.73.7.4245-4252.2005
  60. Shokal U, Eleftherianos I. Evolution and function role of complement in cnidarian-dinoflagellate symbiosis and immune challenge in the sea anemone aiptasia pallida of thioester-containing proteins and the complement system in the innate immune response. Front Immunol. 2017;8:759. doi: 10.3389/fimmu.2017.00759
  61. Najafpour B, Cardoso JCR, Canário AVM, Power DM. Specific evolution and gene family expansion of complement 3 and regulatory factor H in fish. Front Immunol. 2020;11:568631. doi: 10.3389/fimmu.2020.568631
  62. Poole AZ, Kitchen SA, Weis VM. The role of complement in cnidarian-dinoflagellate symbiosis and immune challenge in the sea anemone aiptasia pallida. Front Microbiol. 2016;7:519. doi: 10.3389/fmicb.2016.00519
  63. Wang Z, Liang X, Li G, et al. Molecular characterization of complement component 3 (c3) in the pearl oyster pinctada fucata improves our understanding of the primitive complement system in bivalve. Front Immunol. 2021;12:652805. doi: 10.3389/fimmu.2021.652805
  64. Peronato A, Drago L, Rothbächer U, et al. Complement system and phagocytosis in a colonial protochordate. Dev Comp Immunol. 2020;103:103530. doi: 10.1016/j.dci.2019.103530
  65. Elvington M, Liszewski MK, Atkinson JP. Evolution of the complement system: from defense of the single cell to guardian of the intravascular space. Immunol Rev. 2016;274(1):9–15. doi: 10.1111/imr.12474
  66. Nordahl EA, Rydengård V, Nyberg P, et al. Activation of the complement system generates antibacterial peptides. Proc Natl Acad Sci USA. 2004;101(48):16879–16884. doi: 10.1073/pnas.0406678101
  67. Wu M, Jia BB, Li MF. Complement C3 and activated fragment C3a are involved in complement activation and anti-bacterial immunity. Front Immunol. 2022;13:813173. doi: 10.3389/fimmu.2022.813173
  68. Hugli TE. Human anaphylatoxin (C3a) from the third component of complement. Primary structure. J Biol Chem. 1975;250(21):829–8301. doi: 10.1016/s0021-9258(19)40758-8
  69. Klos A, Tenner AJ, Johswich KO, et al. The role of the anaphylatoxins in health and disease. Mol Immunol. 2009;46(14):2753–2766. doi: 10.1016/j.molimm.2009.04.027
  70. Peng Q, Li K, Sacks SH, Zhou W. The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses. Inflamm Allergy Drug Targets. 2009;8(3):236–246. doi: 10.2174/187152809788681038
  71. Zipfel PF, Reuter M. Complement activation products C3a and C4a as endogenous antimicrobial peptides. Int J Pept Res Ther. 2009;15:87–95. doi: 10.1007/s10989-009-9180-5
  72. Zhang XJ, Zhong YQ, Ma ZY, et al. Insights into the antibacterial properties of complement peptides C3a, C4a, and C5a across vertebrates. J Immunol. 2022;209(12):2330–2340. doi: 10.4049/jimmunol.2101019
  73. Pasupuleti M, Walse B, Nordahl EA, et al. Preservation of antimicrobial properties of complement peptide C3a, from invertebrates to humans. J Biol Chem. 2007;282(4):2520–2528. doi: 10.1074/jbc.M607848200
  74. Sonesson A, Ringstad L, Nordahl EA, et al. Antifungal activity of C3a and C3a-derivedpeptides against Candida. Biochim Biophys Acta. 2007;1768(2):346–353. doi: 10.1016/j.bbamem.2006.10.017
  75. Pasupuleti M, Walse B, Svensson B, et al. Rational design of antimicrobial C3a analogues with enhanced effects against Staphylococci using an integrated structure and function-based approach. Biochemistry. 2008;47(35):9057–9070. doi: 10.1021/bi800991e
  76. Ringstad L, Andersson Nordahl E, Schmidtchen A, Malmsten M. Composition effect on peptide interaction with lipids and bacteria: variants of C3a peptide CNY21. Biophys J. 2007;92(1):87–98. doi: 10.1529/biophysj.106.088161
  77. Gao S, Cui Z, Zhao MH. The complement C3a and C3a receptor pathway in kidney diseases. Front Immunol. 2020;11:1875. doi: 10.3389/fimmu.2020.01875
  78. Ganu VS, Müller-Eberhard HJ, Hugli TE. Factor C3f is a spasmogenic fragment released from C3b by factors I and H: the heptadeca-peptide C3f was synthesized and characterized. Mol Immunol. 1989;26(10):939–948. doi: 10.1016/0161-5890(89)90112-0
  79. Pozolotin VA, Umnyakova ES, Kopeykin PM, et al. Evaluation of antimicrobial activity of the C3f peptide, a derivative of human C3 protein. Russian Journal of Bioorganic Chemistry. 2021;47(3):741–748. doi: 10.1134/S1068162021030158
  80. Wang H, Liu M. Complement C4, infections, and autoimmune diseases. Front Immunol. 2021;12:694928. doi: 10.3389/fimmu.2021.694928
  81. Coss SL, Zhou D, Chua GT, et al. The complement system and human autoimmune diseases. J Autoimmun. 2022;102979. doi: 10.1016/j.jaut.2022.102979
  82. Zhou D, King EH, Rothwell S, et al. Low copy numbers of complement C4 and C4A deficiency are risk factors for myositis, its subgroups and autoantibodies. Ann Rheum Dis. 2023;82(2):235–245. doi: 10.1136/ard-2022-222935
  83. Yang Y, Chung EK, Zhou B, et al. The intricate role of complement component C4 in human systemic lupus erythematosus. Curr Dir Autoimmun. 2004;7:98–132. doi: 10.1159/000075689
  84. Nonaka M, Kimura A. Genomic view of the evolution of the complement system. Immunogenetics. 2006;58(9):701–713. doi: 10.1007/s00251-006-0142-1
  85. Gorski JP, Hugli TE, Müller-Eberhard HJ. C4a: the third anaphylatoxin of the human complement system. Proc Natl Acad Sci USA. 1979;76(10):5299–5302. doi: 10.1073/pnas.76.10.5299
  86. Barnum SR. C4a: An anaphylatoxin in name only. J Innate Immun. 2015;7(4):333–339. doi: 10.1159/000371423
  87. Laursen NS, Magnani F, Gottfredsen RH, et al. Structure, function and control of complement C5 and its proteolytic fragments. Curr Mol Med. 2012;12(8):1083–1097. doi: 10.2174/156652412802480925
  88. Schatz-Jakobsen JA, Yatime L, Larsen C, et al. Structural and functional characterization of human and murine C5a anaphylatoxins. Acta Crystallogr D Biol Crystallogr. 2014;70(Pt6):1704–1717. doi: 10.1107/S139900471400844X
  89. Hughes AL. Phylogeny of the C3/C4/C5 complement-component gene family indicates that C5 diverged first. Mol Biol Evol. 1994;11(3):417–425. doi: 10.1093/oxfordjournals.molbev.a040123
  90. Xu Y, Narayana SV, Volanakis JE. Structural biology of the alternative pathway convertase. Immunol Rev. 2001;180:123–135. doi: 10.1034/j.1600-065x.2001.1800111.x
  91. Li X, Sun L. A teleost complement factor Ba possesses antimicrobial activity and inhibits bacterial infection in fish. Dev Comp Immunol. 2017;71:49–58. doi: 10.1016/j.dci.2017.01.021
  92. Volanakis JE, Narayana SV. Complement factor D, a novel serine protease. Protein Sci. 1996;5(4):553–564. doi: 10.1002/pro.5560050401
  93. Fishelson Z, Pangburn MK, Müller-Eberhard HJ. C3 convertase of the alternative complement pathway. Demonstration of an active, stable C3b, Bb (Ni) complex. J Biol Chem. 1983;258(12):7411–7415. doi: 10.1016/s0021-9258(18)32194-x
  94. Ding M, Fan J, Wang W, et al. Molecular characterization, expression and antimicrobial activity of complement factor D in Megalobrama amblycephala. Fish Shellfish Immunol. 2019;89:43–51. doi: 10.1016/j.fsi.2019.03.031
  95. Lachmann PJ. The story of complement factor I. Immunobiology. 2019;224(4):511–517. doi: 10.1016/j.imbio.2019.05.003
  96. Lachmann PJ, Müller-Eberhard HJ. The demonstration in human serum of “conglutinogen-activating factor” and its effect on the third component of complement. J Immunol. 1968;100(4):691–698. doi: 10.4049/jimmunol.100.4.691
  97. Nakao M, Hisamatsu S, Nakahara M, et al. Molecular cloning of the complement regulatory factor I isotypes from the common carp (Cyprinus carpio). Immunogenetics. 2003;54(11):801–806. doi: 10.1007/s00251-002-0518-9
  98. Xiang J, Li X, Chen Y, et al. Complement factor I from flatfish half-smooth tongue (Cynoglossus semilaevis) exhibited anti-microbial activities. Dev Comp Immunol. 2015;53(1):199–209. doi: 10.1016/j.dci.2015.06.010
  99. Jia BB, Jin CD, Li MF. The trypsin-like serine protease domain of paralichthys olivaceus complement factor I regulates complement activation and inhibits bacterial growth. Fish Shellfish Immunol. 2020;97:18–26. doi: 10.1016/j.fsi.2019.12.019
  100. Rother RP, Rollins SA, Mojcik CF, et al. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol. 2007;25(11):1256–1264. doi: 10.1038/nbt1344
  101. Konar M, Granoff DM. Eculizumab treatment and impaired opsonophagocytic killing of meningococci by whole blood from immunized adults. Blood. 2017;130(7):891–899. doi: 10.1182/blood-2017-05-781450
  102. McNamara LA, Topaz N, Wang X, et al. High risk for invasive meningococcal disease among patients receiving eculizumab (soliris) despite receipt of meningococcal vaccine. MMWR Morb Mortal Wkly Rep. 2017;66(27):734–737. doi: 10.15585/mmwr.mm6627e1
  103. Barnum SR. Therapeutic inhibition of complement: well worth the risk. Trends Pharmacol Sci. 2017;38(6):503–505. doi: 10.1016/j.tips.2017.03.009

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».