Venous return and pulmonary hemodynamics under the positive end-expiratory pressure mechanical ventilation
- Authors: Evlakhov V.I.1,2, Poyassov I.Z.1,3
-
Affiliations:
- Institute of Experimental Medicine
- Academician I.P. Pavlov First Saint Petersburg State Medical University
- Saint Petersburg State University of Air-Space Instrumentation
- Issue: Vol 19, No 3 (2019)
- Pages: 11-20
- Section: Analytical reviews
- URL: https://bakhtiniada.ru/MAJ/article/view/15999
- DOI: https://doi.org/10.17816/MAJ19311-20
- ID: 15999
Cite item
Full Text
Abstract
In the review we have discussed the mechanisms of the changes of the venous return and pulmonary hemodynamics which take place in clinical cases of the mechanical lung ventilation with positive end-expiratory pressure. In these conditions the elevating of right atrial pressure does not cause the decreasing of the venous return, because the mean circulatory filling pressure also increases. Thus, the gradient for venous return remains relatively constant. In case of the mechanical lung ventilation with positive end-expiratory pressure the decreasing of the venous return is the result of the elevation of the venous resistance as consequence of the direct increasing of the intrathoracic and transdiaphragmatic pressures and activation of the reflectory neurogenic mechanisms. In the conditions, indicated above, the increased alveolar pressure leads to the improvement of the diffused lung capacity for oxygen, which decreases the manifestations of the hypoxic pulmonary vasoconstriction and thus — diminishes pulmonary vascular resistance. The character of changes of the last one is determined by the reactions of the two types (alveolar and extraalveolar) intraparenchimal pulmonary vessels. This leads to the changes of the resistive and capacitive functions of the pulmonary vessels. In case of the high levels of the positive end-expiratory pressure (more than 30 cm of water column) the value of alveolar pressure is comparable or even more excessive than pulmonary artery pressure (12–16 mm Hg), which can be the reason of the decreasing of the right ventricular contractility and the venous return. The increasing of the capillary filtration coefficient of pulmonary vessels in the conditions of the mechanical lung ventilation with positive end-expiratory pressure can be the result of the activation of the mechanosensitive transient receptor potential vanilloid-4 (TRPV4) channels and the increasing endothelial calcium entry.
Full Text
##article.viewOnOriginalSite##About the authors
Vadim I. Evlakhov
Institute of Experimental Medicine; Academician I.P. Pavlov First Saint Petersburg State Medical University
Author for correspondence.
Email: viespbru@mail.ru
SPIN-code: 9072-4077
Doctor of Medical Sciences, Head of the Laboratory of the Physiology of Visceral Systems named acad. K.M. Bykov; Docent of the Department of Normal Physiology
Russian Federation, Saint PetersburgIlya Z. Poyassov
Institute of Experimental Medicine; Saint Petersburg State University of Air-Space Instrumentation
Email: ilpoar@yandex.ru
SPIN-code: 7285-0493
Doctor of Biological Sciences, Senior Research Fellow of the Laboratory of the Physiology of Visceral Systems named acad. K.M. Bykov; Professor of the Department of the Medical Electronics
Russian Federation, Saint PetersburgReferences
- Acosta P, Santisbon E, Varon J. The use of positive end-expiratory pressure in mechanical ventilation. Crit Care Clin. 2007;23(2):251-261. https://doi.org/10.1016/ j.ccc.2006.12.012.
- Davis JE, Sternbach GL, Varon J. Paracelsus and mechanical ventilation. Resuscitation. 2000;47(1):3-5. https://doi.org/10.1016/s0300-9572(00)00237-9.
- Luecke T, Pelosi P. Clinical review: positive end-expiratory pressure and cardiac output. Crit Care. 2005;9(6):607-621. https://doi.org/10.1186/cc3877.
- Mahmood SS, Pinsky MR Heart-lung interactions during mechanical ventilation: the basics. Ann Transl Med. 2018;6(18):349. https://doi.org/10.21037/atm.2018.04.29.
- Grübler MR, Wigger O, Berger D, Blöchlinger S. Basic concepts of heart-lung interactions during mechanical ventilation. Swiss Med Wkly. 2017;147:w14491. https://doi.org/10.4414/smw.2017.14491.
- Rouby JJ, Lu Q, Goldstein I. Selecting the right level of positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;165(3):1182-1186. https://doi.org/10.1164/ajrccm. 165.8.2105122.
- Schmitt JM, Vieillard-Baron A, Augarde R, et al. Positive end-expiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med. 2001;29(6): 1154-1158. https://doi.org/10.1097/00003246-200106000- 00012.
- Bendjelid K, Romand JA. [Cardiopulmonary interactions in patients under positive pressure ventilation. (In French)]. Ann Fr Anesth Reanim. 2007;26(3):211-217. https://doi.org/10.1016/j.annfar.2006.10.027.
- Berger D, Takala J. Determinants of systemic venous return and the impact of positive pressure ventilation. Ann Transl Med. 2018;6(18):350. https://doi.org/10.21037/atm.2018.05.27.
- Bendjelid K, Romand JA. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med. 2003;29(3):352-360. https://doi.org/10.1007/s00134-002-1615-9.
- Marini M, Caretta G, Vagnarelli F, et al. [Hemodynamic effects of positive end-expiratory pressure. (In Italian)]. G Ital Cardiol (Rome). 2017;18(6):505-512. https://doi.org/10.1714/2700.27611.
- Berger D, Moller PW, Weber A, et al. Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return. Am J Physiol Heart Circ Physiol. 2016;311(3):H794-806. https://doi.org/10.1152/ajpheart. 00931.2015.
- Гайтон А.К., Холл Дж.Э. Медицинская физиология / пер. с англ. под ред. В.И. Кобрина, М.М. Галагудза, А.Е. Умрюхина. – 2-е изд., испр. и доп. – М.: Логосфера, 2018. – 1328 c. [Guyton AK, Hall GE. Medical physiology. Translated from English, ed. by V.I. Kobrin, M.M. Galagudza, A.E. Umryuchin. 2nd ed. revised and updated. Moscow: Logosphera; 2018. 1328 p. (In Russ.)]
- Морман Д., Хеллер Л. Физиология сердечно-сосудистой системы / пер. с англ. – 4-е изд. – СПб.: Питер, 2000. – 256 с. [Mohrman D, Heller L. Cardiovascular physiology. Translated from English. 4th ed. Saint Petersburg: Piter; 2000. 256 p. (In Russ.)]
- Koeppen BM, Stanton BA. Berne and Levy physiology. 7th ed. Elsevier Science; 2017. 944 p.
- Ganong WF. Ganong’s review of medical physiology. 25th ed. New York: McGraw-Hill Companies; 2016. 912 p.
- Gelman S. Venous function and central venous pressure: a physiologic story. Anesthesiology. 2008;108(4):735-748. https://doi.org/10.1097/aln.0b013e3181672607.
- Magder S. The classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol. 2006;101(5):1533. https://doi.org/10.1152/japplphysiol. 00903.2006.
- Magder S. Heart-lung interaction in spontaneous breathing subjects: the basics. Ann Transl Med. 2018;6(18):348. https://doi.org/10.21037/atm.2018.06.19.
- Mukkamala R, Cohen RJ, Mark RG. A computational model-based validation of Guyton’s analysis of cardiac output and venous return curves. Comput Cardiol. 2002;29(5):561-564. https://doi.org/10.1109/cic.2002.1166834.
- Pang CC. Measurement of body venous tone. J Pharm Toxicol Methods. 2000;44(2):341-360. https://doi.org/10.1016/s1056-8719(00)00124-6.
- Войнов В.А. Патофизиология сердца и сосудов: учеб. пособие. – М.: БИНОМ, 2017. – 208 с. [Voinov VA. Pathophysiology of the heart and vessels: textbook. Moscow: BINOM; 2017. 208 p. (In Russ.)]
- Beard DA, Feigl EO. Understanding Guytons venous return curves. Am J Physiol (Heart Circ Physiol). 2011;301(3):H629-Н633. https://doi.org/10.1152/ajpheart. 00228.2011.
- Bendjelit K. Right atrial pressure: determinant or result of change in venous return? Chest. 2005;128(5):3639-3640. https://doi.org/10.1378/chest.128.5.3639.
- Tyberg JV. How changes in venous capacitance modulate cardiac output. Pflugers Arch (Eur J Physiol). 2002;445(1):10-17. https://doi.org/10.1007/s00424-002-0922-x.
- Brengelmann GL. A critical analysis of the view that right atrial pressure determines venous return. J Appl Physiol. 2002;94(3):849-859. https://doi.org/10.1152/japplphysiol. 00868.2002.
- Шмидт Р., Тевс Г. Физиология человека. Т. 2 / пер. с англ. – 3-е изд., перераб. и доп. – М.: Мир, 2006. – 314 c. [Shmidt R, Thews G. Human physiology. Vol. 2. Transl. from English. 3rd ed., revised and updated. Moscow: Mir; 2006. 314 p. (In Russ.)]
- Ткаченко Б.И., Евлахов В.И., Поясов И.З. О роли постоянства давления в правом предсердии в формировании величины венозного возврата крови к сердцу // Российский физиологический журнал им. И.М. Сеченова. – 2001. – Т. 87. – № 5. – С. 670–678. [Tkachenko BI, Evlakhov VI, Poiasov IZ. The constant level of the right atrial pressure and its role in the venous return characteristics. Russian journal of physiology. 2001;87(5):670-678. (In Russ.)]
- Tkachenko BI, Evlakhov VI, Poyasov IZ. Relationship between venous return and right-atrial pressure. Bull Exp Biol Med. 2001;131(5):421-423. https://doi.org/:10.1023/a:1017903410573.
- Tkachenko BI, Evlakhov VI, Poyasov IZ. Relationships between venous return and blood pressure in caval veins and right atrium during pressor stimulation. Bull Exp Biol Med. 2001;132(4):926-928. https://doi.org/10.1023/a:1013642622430.
- Jellinek H, Krenn H, Oczenski W, et al. Influence of positive airway pressure on the pressure gradient for venous return in humans. J Appl Physiol. 2000;88(3):926-932. https://doi.org/10.1152/jappl.2000.88.3.926.
- Falke KJ. The introduction of positive end-expiratory pressure into mechanical ventilation: a retrospective. Intensive Care Med. 2003;29(8):1233-1236. https://doi.org/10.1007/s00134-003-1832-x.
- Hollander EH, Dobson GM, Wang JJ, et al. Direct and series transmission of left atrial pressure perturbations to the pulmonary artery: a study using wave-intensity analysis. Am J Physiol (Heart Circ Physiol). 2004;286(1):H267-H275. https://doi.org/10.1152/ajpheart.00505.2002.
- Presson RG, Baumgartner WA, Peterson AJ, et al. Pulmonary capillaries are recruited during pulsatile flow. J Appl Physiol. 2002;92(3):1183-1190. https://doi.org/10.1152/japplphysiol.00845.2001.
- Dorfmüller P, Günther S, Ghigna MR, et al. Microvascular disease in chronic thromboembolic pulmonary hypertension: a role for pulmonary veins and systemic vasculature. Eur Respir J. 2014;44(5):1275-1288. https://doi.org/10.1183/09031936.00169113.
- Gao Y, Raj JU. Role of veins in regulation of pulmonary circulation. Am J Physiol (Lung Cell Mol Physiol). 2005;288(2):L213-L226. https://doi.org/10.1152/ajplung. 00103.2004.
- Bronicki RA, Anas NG. Cardiopulmonary interaction. Pediatr Crit Care Med. 2009;10(3):313-322. https://doi.org/10.1097/pcc.0b013e31819887f0.
- Luecke T, Pelosi P, Quintel M. [Hämodynamische effekte der mechanischen beatmung. (In Germ)]. Der Anaesthesist. 2007;56(12):1242-1251. https://doi.org/10.1007/s00101-007-1274-x.
- Pinsky MR. Functional hemodynamic monitoring. Crit Care Clin. 2015;31(1):89-111. https://doi.org/10.1016/j.ccc. 2014.08.005.
- Pinsky MR. The right ventricle: interaction with the pulmonary circulation. Critical Care. 2016;20(1):266-275. https://doi.org/10.1186/s13054-016-1440-0.
- Pinsky MR. Cardiopulmonary interactions: physiologic basis and clinical applications. Ann Am Thorac Soc. 2018;15(Suppl 1):S45-S48. https://doi.org/10.1513/annalsats.201704-339fr.
- Conrad SA, Zhang S, Arnold TC, et al. Protective effects of low respiratory frequency in experimental ventilator-associated lung injury. Crit Care Med. 2005;33(4):835-840. https://doi.org/10.1097/01.ccm.0000159532.56865.8a.
- Kopterides P, Kapetanakis T, Siempos I, et al. Short-term administration of a high oxygen concentration is not injurious in an ex-vivo rabbit model of ventilator-induced lung injury. Anesth Analg. 2009;108(2):556-564. https://doi.org/10.1213/ane.0b013e31818f10f7.
- Hamanaka K, Jian MY, Weber DS, et al. TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am J Physiol (Lung Cell Mol Physiol). 2007;293(4):L923-L932. https://doi.org/10.1152/ajplung.00221.2007.
- Евлахов В.И., Поясов И.З. Альфа-адренергические механизмы констрикторных реакций легочных вен при экспериментальной тромбоэмболии легочной артерии // Российский физиологический журнал им. И.М. Сеченова. – 2018. – Т. 104. – № 10. – С. 1190–1201. [Evlakhov VI, Poyassov IZ. The adrenergic mechanisms of the pulmonary veins constrictor reactions in the experimental pulmonary thromboembolism model. Russian journal of physiology. 2018;104(10):1190-1201. (In Russ.)]. https://doi.org/10.7868/S0869813918100064.
Supplementary files
