The role of angiogenic and neuronal factors in the mechanisms of thymic involution in tumor growth


Cite item

Full Text

Abstract

The growth of many human and rodent tumors is accompanied by the development of thymic involution. The mechanisms of this process are still unknown. The article describes modern theories and approaches for studying this problem as well as the results of many years of research of the mechanisms of thymic involution during the growth of experimental tumors. New important data are received on the role of vascular endothelial growth factor (VEGF) in regulation of thymocyte migration and apoptosis. Semaphorin ЗА demonstrated a chemorepellent activity towards thymocytes and abolished chemotactic effect of VEGF. VEGF and Semaphorin ЗА receptors were investigated on thymocytes and thymic stroma. The data obtained indicate on important role of VEGF and Semaphorin ЗА in the regulation of thymocyte migration in normal conditions and tumor growth.

About the authors

E P Kiseleva

ГУ «Научно-исследовательский институт экспериментальной медицины СЗО РАМН»

Email: ekissele@yandex.ru

References

  1. Гранов А.М., Шутко А.Н. Парадоксы злокачественного роста и тканевой несовместимости. СПб.: Гиппократ, 2002.
  2. Киселева Е.П. Механизмы инволюции тимуса и активации системы мононуклеарных фагоцитов при росте экспериментальных опухолей: Автореф. дис.. д-ра мед. наук. Институт экспериментальной медицины РАМН. СПб., 2002. 38 с.
  3. Киселева Е.П. Механизмы инволюции тимуса при опухолевом росте // Усп. совр. биол. 2004. T. 124. №6. С. 102-114.
  4. Киселева Е.П., Крылов A.B., Людыно В.И., Суворов А.Н. Влияние VEGF на пролиферацию и апоптоз тимоцитов мышей in vitro // Бюл. эксп. биол. мед. 2005. Т. 139. № 5. С. 533-537.
  5. Киселева Е.П., Крылов A.B., Старикова Э.А., Кузнецова С.А. Фактор роста сосудистого эндотелия и иммунная система // Усп. совр. биол. 2009. Т. 129. № 4. С. 336-347.
  6. Киселева Е.П., Суворов A.H., Огурцов Р.П. Роль апоптоза в процессе инволюции тимуса при росте сингенной перевиваемой опухоли у мышей // Изв. АН. Сер. Биология. 1998. № 2. С. 172-179.
  7. Крылов A.B. Экспрессия генов фактора роста эндотелия сосудов и тромбоспондина-1 в клетках тимуса и перитонеальных макрофагах мышей при опухолевом росте: Автореф. дис.... канд. мед наук. Институт экспериментальной медицины РАМН. СПб., 2008.21 с.
  8. Кузнецова О.М., Кушлинский Н.Е., Березов Т.Т. Фактор роста эндотелия сосудов: особенности секреции в костной ткани в норме и при патологии // Биомед. хим. 2003. Т. 49. № 4. С. 360-373.
  9. Лямина И.В. Влияние VEGF на миграцию in vitro тимоцитов интактных мышей и мышей-опухоленосителей // Вестн. уральск. академ. науки. 2009. №2/1 (24). С. 268-269.
  10. Степанова О.М., Крылов A.B., Людыно В.И., Киселева Е.П. Экспрессия генов VEGF-А и VEGF-С и их рецепторов в лимфоцитах и макрофагах мышей // Биохимия. 2007. Т. 72. № 11. С. 1468-1473.
  11. Трапезникова М.Ф., Шибаев A.H., Казанцева И.А. и др. Фактор роста эндотелия сосудов у пациентов с раком простаты и доброкачественной гиперплазией железы // Вести. РАМН. 2005. № 5. С. 14-16.
  12. Acevedo L.М., Barillas S., Weis S.M. et al. Semaphorin ЗА suppresses VEGF-mediated angiogenesis yet acts as vascular permeability factor // Blood. 2008. Vol. 111. P. 2674-2680.
  13. Adkins B., Charyulu V., Sun Q.-L. et al. Early block in maturation is associated with thymic involution in mammary tumor-bearing mice // J. Immunol. 2000. Vol. 164. P. 5635-5644.
  14. Bachelder R.E., Lipscomb E.A., Lin X. et al. Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells // Cancer Res. 2003. Vol. 63. P. 5230-5233.
  15. Baseta J.G., Stutman O. TNF regulates thymocyte production by apoptosis and proliferation of the triple negative (CD3-CD4-CD8-) subset // J. Immunol. 2000. Vol. 165. P. 5621-5630.
  16. Cario R., Altman N.H., Lopez D.M. Downregulation of interleukin-7 and hepatocyte growth factor in the thymic microenvironment is associated with thymus involution in tumor-bearing mice // Cancer Immunol. Immunother. 2009. Vol. 58. P. 2059-2072.
  17. Casazza A., Fazzari P., Tamagnone L. Semaphorin signals in cell adhesion and cell migration: Functional role and molecular mechanisms // Semaphoris: Receptor and intracellular signaling mechanisms / J. Pasterkamp ed. Landes Bioscience. 2006. P. 1-19.
  18. Corbel C., Lemarchandel V., Thomas-Vaslin V. et al. Neuropilin I and CD25 co-regulation during early murine thymic differentiation // Dev. Comp. Immunol. 2007. Vol. 31. P. 1082-1094.
  19. Fu Y., Paul R.D., Wang Y., Lopez D.M. Thymic involution and thymocyte phenotypic alterations induced by murine mammary adenocarcinomas // J. Immunol. 1989. Vol. 143. P. 4300-4307.
  20. Gruver A.L., Sempowski G.D. Cytokines, leptin, and stress-induced thymic atrophy // J. Leuk. Biol. 2008. Vol. 84. P. 915-923.
  21. Huang Y., Chen X. Dikov M.M. et al. Distinct roles of VEGFR-1 and -2 in the aberrant hematopoiesis as sociated with elevated levels of VEGF // Blood. 2007. Vol. 110. P. 624-631.
  22. Kim I., Moon S., Kim S. H. et al. Vascular endothelial growth factor expression of Intercellular adhesion molecule I (ICAM-1), Vascular cell adhesion molecule 1 (VCAM-1 ), and E-selectin through Nuclear Factor-kB activation in endothelial cells //J. Biol. Chem. 2001. Vol. 276. P.7614-7620.
  23. Kuss I., Schaefer C., Godfrey T.E. et al. Recent thymic emigrants and subsets of naive and memory T cells in the circulation of patients with head and neck cancer // Clin. Immunol. 2005. Vol. 116. P. 27-36.
  24. Lee Т.Н., Avraham H., Lee S., Avraham S. Vascular endothelial growth factor modulates neutrophil transendothelial migration via up-regulation of interleukin-8 in human brain microvascular endothelial cells //. Biol. Chem. 2002. Vol. 277. P. 10445-10451.
  25. Lepelletier Y., Smaniotto S., Hadj-Slimane R. et al. Control of human thymocyte migration by neuropilin-l/semaphorin-3A-mediated interactions // Proc. Natl. Acad. Sei. 2007. Vol. 104. P. 5545-5550.
  26. Luttun A., Tjwa M., Moons L. et al. Revascularization of ischemic tissues by P1GF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Fltl //Nat. Med. 2002. Vol. 8. P. 831-840.
  27. Manfredi A.A., Capobianco A., Bianchi M.E., Rovere-Querini P. Regulation of dendriticand T-cell fate by injury-associated endogenous signals // Crit. Rev. Immunol. 2009. Vol. 29. P. 1-18.
  28. Mendes-da-Cruz D.A., Lepelletier Y., Brignier A.C. et al. Neuropilins, semaphorins, and their role in thymocyte development // Ann. N.Y. Acad. Sei. 2009. Vol. 1153. P. 20-28.
  29. Mitchell W.A., Meng I., Nicholson S.A., Aspinall R. Thymic output, ageing and zinc.7 Biogerontology. 2006. Vol. 7. P. 46І-470.
  30. Мог F., Quintana F.J., Cohen I.R. Angiogenesis-inflammation cross talk: Vascular endothelial growth factor is secreted by activated T Cells and induces TH 1 polarization // J. Immunol. 2004. Vol. 172. P. 4618-4623.
  31. Naiyer A.J., Jo D.Y., Ahn J. et al. Stromal derived factor-1-induced chemokinesis of cord blood CD34(+) cells (long-term culture-initiating cells) through endothelial cells is mediated by E-selectin // Blood. 1999. Vol. 15. P. 4011-4019.
  32. Neufeld G., Kessler О. The semaphorins: versatile regulators of tumour progression and tumour angiogenesis // Nature Rev. Cancer. 2008. Vol. 8. P. 632-645.
  33. Ohm J.E., Gabrilovich D.I., Sempowski G.D. et al. VEGF in//bits T-cell development and may contribute to tumor-induced immune suppression / Blood. 2003. Vol. 101. P. 4878-4886.
  34. Owen J.L., Iragavarapu-Charyulu V., Gunja-Smith Z. et al. Up-regulation of matrix metalloproteinase-9 in T-lymphocytes of mamary tumor bearers: role of vascular endothelial growth factor // J. Immunol. 2003. Vol. 171. P. 4340-4351.
  35. Pfister G., Savino W. Can the immune system still be efficient in the elderly? An immunological and immunoendocrine therapeutic perspective // Neuroimmuno-modulation. 2008. Vol. 15. P. 351-364.
  36. Plum J., De Smedt M., Leclercq G., Tison В. Inhibitory effect of murine recombinant IL-4 on thymocyte development in fetal thymus organ cultures // J. Immunol. 1990. Vol. 145. P. 1066-1073.
  37. Savino W., Dardenne M. Neuroendocrine control of thymus physiology // Endocrinol. Rev. 2000. Vol. 21. P. 412-443.
  38. Shanker A., Singh S.M., Sodhi A. Ascitic growth of a spontaneous transplantable T cell lymphoma induces thymic involution. 2. Induction of apoptosis in thymocytes // Tumour. Biol. 2000. Vol. 21. P. 315-327.
  39. Shen H., Clauss M., Ryan J. et al. Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytes // Blood. 1993. Vol. 81. P. 2767-2773.
  40. Shin J.-Y., Yoon l.-H., Kim J.-S. et al. Vascular endothelial growth factor-induced chemotaxis and IL-10 from T cells // Cell. Immunol. 2009. Vol. 256. P. 72-78.
  41. Sun Q.-L., Charyulu V., Lobo D., Lopez D.M. Role of thymic stromal cell dysfunction in the thymic invo lution of mammary tumor-bearing mice //Anticancer Res. 2002. Vol. 22. P. 91-96.
  42. Suzuki K., Kumanogoh A., Kikutani H. Semaphorins and their receptors in immune interactions // Nature Immunol. 2008. Vol. 9. P. 17-23.
  43. Takamatsu H., Takegahara N., Nakagawa Y. et al. Semaphorins guide the entry of dendritic cells into the lymphatics by activation myosin II // Nature Immunol. 2010. published online 30 May 2010, doi: 10.1038/ ni. 1885.
  44. Tanaka K., Koga Y., Taniguchi K. et al. T cell recruitment from the thymus to the spleen in tumor-bearing mice. 1. Analysis of recruited cells by surface markers // Cancer Immunol. Immunothcr. 1986. Vol. 22. P. 3742.
  45. Yamamoto M., Suzuki K., Okuno T. el al. Plexin-A4 negatively regulates T lymphocyte responses // Int. Immunol. 2008. Vol. 20. P. 413-420.
  46. Yla-Herttuala S., Rissanen T.T., Vajanto I., Hartikainen J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine // J. Am. Coll. Cardiol. 2007. Vol. 49. P. 1015.
  47. Zachariah M.A., Cyster J.G. Neural crest-derived pericytes promote egress of mature thymocytes at the cotricomedullary junction // Science. 2010. Vol. 328. P. 1129-1135.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2010 Kiseleva E.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».