Physical, chemical and biochemical properties of Western Siberia Sphagnum and Carex peat soils

Обложка

Цитировать

Полный текст

Аннотация

Было проведено сравнительное исследование физических, химических и биохимических свойств акротелма (торфогенный горизонт) и катотелма (горизонт накопления торфа) участков с доминированием сфагновых и осоковых торфов в Западной Сибири. Концентрация общего азота прямо пропорциональна содержанию нитрат-ионов и ионов аммония, активности уреазы, объемной плотности, и обратно пропорционально отношению C/N, пористости и влажности в обоих рассматриваемых типах почв. Полученные результаты указывают на низкий уровень азотной трансформации и замедление процессов разложения органического вещества в сфагновых и осоковых типах почв. Исследование показало, что сфагновые торфа претерпевают значительные химические и биохимические трансформации (окисление, гидролиз, полимеризация) с аккумуляцией наиболее устойчивых соединений по сравнению с органическим веществом осоковых торфов.

Об авторах

Л В Шайдак

Институт агрокультуры и лесов

Автор, ответственный за переписку.
Email: lech.szajdak@isrl.poznan.pl
Польша

Е Д Лапшина

Югорский государственный университет

Email: e_lapshia@ugrasu.ru
Ханты-Мансийск, Российская Федерация

В Гака

Институт агрокультуры и лесов

Email: lech.szajdak@isrl.poznan.pl
Польша

К Стыла

Институт агрокультуры и лесов

Email: lech.szajdak@isrl.poznan.pl
Польша

Т Мейснер

Институт агрокультуры и лесов

Email: lech.szajdak@isrl.poznan.pl
Польша

М Шчепански

Институт агрокультуры и лесов

Email: lech.szajdak@isrl.poznan.pl
Польша

Е А Заров

Югорский государственный университет

Email: lech.szajdak@isrl.poznan.pl
Ханты-Мансийск, Российская Федерация

Список литературы

  1. Aerts R., Verhoeven J.T.A., Whigham D. 1999. Plant-mediated controls on nutrient cycling in temperate fens and bogs // Ecology. V. 80. P. 2170-2181.
  2. Arkhipov V.S., Maslov S.G. 1998. Composition and properties of typical peat central part of Western Siberia // Chemistry of Plant Raw Materials V. 4. P. 9-16.
  3. Bartha R., Bordeleau L. 1969. Cell-free peroxidases in soil // Soil Biol. Biochem. V. 1. P. 139-143.
  4. Beilman D.W., MacDonald G.M., Smith L.C., Reimer P.J. 2009. Carbon accumulation in peatlands of West Siberia over the last 2000 years // Global Biogeochem. Cy. V. 23. GB1012. doi: 10.1029/2007GB003112.
  5. Bejger R., Gołębiowska D., Nicia P. 2011. Obecność substancji humusopodobnych w roślinności torfotwórczej [The presence of humic-like substances in peat forming plants] // Woda-Środowisko-Obszary Wiejskie V. 11. № 1. P. 21-29.
  6. Błońska E. 2010. Enzyme activity in forest peat soils // Folia For. Pol. Ser. A. V. 52. № 1. P. 20-25.
  7. Borren W., Bleuten W., Lapshina E.D. 2004. Holocene peat and carbon accumulation rates in the southern taiga of western Siberia // Quat. Res. V. 61. P. 42-51.
  8. Bozkurt S., Lucisano M., Moreno L., Neretnieks I. 2001. Peat as a potential analogue for the long-term evolution in landfills // Earth-Sci. Rev. V. 53. P. 95-147.
  9. Chanton J.P., Glaser P.H., Chasar L.S., Burdige D.J., Hines M.E., Siegel D.I., Tremblay L.B., Cooper W.T. 2008. Radiocarbon evidence for the importance of surface vegetation on fermentation and methanogenesis in contrasting types of boreal peatlands // Global Biogeochem. Cy. V. 22. P. 1-11. GB4022. doi: 10.1029/2008GB003274.
  10. Clymo R.S. 1992. Productivity and decomposition of peatland ecosystems // Peatland Ecosystems and Man: an Impact Assessment / Bragg O.P. et al. (eds.). University of Dundee and International Peat Society. P. 3-16.
  11. Clymo R.S., Hayward P.M. 1982. The ecology of Sphagnum // Bryophyte ecology / Smith A.J.E. (Ed.). London, New York: Hapman and Hall. P. 229-289.
  12. Dobrovol'skaya T.G., Golovchenko A.V., Zvyagintsev D.G. 2014. Analysis of ecological factors limiting the destruction of high-moor peat // Eurasian Soil Sci. V. 47. № 3. P. 182-193.
  13. Efremova T.T, Ovchinnikova T.M. 2007. Oxidoreductase activity of peat soils as an indicator of the degree of biochemical transformation of drained and forested bogs in west Siberia // Biol. Bull. V. 34 № 3 P. 297-302. doi: 10.1134/S1062359007030132
  14. Efremova T.T, Ovchinnikova T.M. 2008. Seasonal oxidoreductase activity in reclaimed peat soils in connection with hydrothermal conditions of environment // Contemp. Probl. Ecol. V. 1 № 3 P. 346-352.
  15. Francez A-J., Pinay G., Josselin N., Williams B.L. 2011. Denitrification triggered by nitrogen addition in Sphagnum magellanicum peat // Biogeochem. V. 106. № 3. P. 435-441. doi: 10.1007/s10533-010-9523-5
  16. Glenn A.J., Flanagan L.B., Syed K.H., Carlson P.J. 2006. Comparison of net ecosystem CO2 exchange in two peatlands in western Canada with contrasting dominant vegetation, Sphagnum and Carex // Agri. Forest Meteorol. V. 140. P. 115-135.
  17. Golovchenko A.V., Tikhonova E. Yu., Zvyagintsev D.G. 2007. Abundance, biomass, structure, and activity of the microbial complexes of minerotrophic and ombrotrophic peatlands // Microbiology V. 76. №. 5. P. 630-637.
  18. Holden J., Burt T.P. 2003. Hydrological studies on blanket peat: the significance of the acrotelm-catotelm model // J. Ecol. V. 91. P. 86-102.
  19. Inisheva L.I., Zemtsov A.A., Novikov S.M. 2011. Vasugan Mire. Natural conditions, structure and functioning // Tomsk State Pedagogical University Press. P. 1-160.
  20. Jassey V.E.J., Chiapusio G., Gilbert D., Toussaint M.L., Binet P. 2012. Phenoloxidase and peroxidase activities in Sphagnum-dominated peatland in a warming climate // Soil Biol. Biochem. V. 46. P. 49-52. doi: 10.1016/j.soilbio.2011.11.011
  21. Joosten H., Clarke D. 2002. Wise use of mires and peatlands-background and principles including a framework for decision-making. Saarijärvi: International Mire Conservation Group and International Peat Society. 304 p.
  22. Kandeler E. 1996. Nitrate reductase activity // Methods in soil biology / Schinner F. et al. (eds.). Berlin Heidelberg: Springer-Verlag. P. 176-179.
  23. Kang H., Freeman C. 1999. Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors // Soil Biol. Biochem. V. 31. P. 449-454.
  24. Koerselman W., van Kerkhoven M.B., Verhoeven J.T.A. 1993. Release of inorganic N, P and K in peat soils; effect of temperature, water chemistry and water level // Biogeochemistry V. 20. P 63-81.
  25. Koops J.G., Oenema O., van Beusichem M.L. 1996. Denitrification in the top and sub soil of grassland on peat soils // Plant Soil. V. 184. P. 1-10.
  26. Krawczyński J. 1972. Diagnostyka enzymologiczna w medycynie praktycznej. [Enzymatologic diagnostic in practical medicine]. Warsaw: PZWL. P. 182-184. (in Pol.)
  27. Lappalainen E. 1996. Global peat resources. Jyska, Finland: International Peat Society. 358 p.
  28. Limpens J., Heijmans M.M.P.D., Berendse F. 2006. The nitrogen cycle in boreal peatlands // Boreal Peatland Ecosystems / Wieder R.K., Vitt D.H. (eds.). Berlin/Heidelberg: Springer. Ecological Studies. Vol. 188. P. 195-230.
  29. Lovley D.R., Anderson R.T. 2000. The influence of dissimilatory metal reduction on the fate of organic and metal contaminants in the subsurface // J. Hydrol. V. 8. P. 77-88.
  30. Łoginow W. 1967. Wpływ kwasów huminowych na proces dezaminacji aminokwasów. [Effect of humic acid on the process of deamination of amino acids] // Pamietnik Puławski. V. 29. P. 1-43.
  31. Mäkilä M. 2011a. The sufficiency of peat for energy use on the basis of carbon accumulation // Geoscience for Society 125th Anniversary Volume. Geological Survey of Finland / Nenonen K., Nurmi P.A. (Ed.). Special Paper V. 49. P. 163-170.
  32. Mäkilä M. 2011b. Carbon accumulation in pristine and drained mires // Geoscience for Society 125th Anniversary Volume. Geological Survey of Finland / Nenonen K., Nurmi P.A. (Ed.). Special Paper V. 49. P. 171-177.
  33. Mäkilä M., Goslar T. 2008. The carbon dynamics of surface peat layers in southern and central boreal mires of Finland and Russian Karelia // Suo. V. 59. № 3. P. 49-69.
  34. Malmer N., Wallén B. 2005. Nitrogen and phosphorus in mire plants: variation during 50 years in relation to supply rate and vegetation type // Oikos. V. 109. P. 539-554.
  35. Minczewski L., Marczenko Z. 1976. Chemia analityczna. [Analytical Chemistry]. Warsaw: PWN. 375 p. (in Pol.)
  36. Nungesser M.K. 2003. Modelling microtopography in boreal peatlands: hummocks and hollows // Ecol. Model. V. 165. P. 175-207.
  37. Okruszko H., Piaścik H. 1990. Charakterystyka gleb hydrogenicznych. [Characterization of hydrogenic soils]. Olsztyn: ART. 291 p. (in Pol.)
  38. Paavilainen E., Päivänen J. 1995. Peatland Forestry: ecology and principles // Ecological Studies 111 / Germany, Bedin, Heidelberg: Springer-Verlag. 452 p.
  39. Perucci P., Casucci C., Dumontet S. 2000. An improved method to evaluate the o-diphenol oxidase activity of soil // Soil Biol. Biochem. V. 32. P. 1927-1933.
  40. Repo M.E., Huttunen J.T., Naumov A.V., Chichulin A.V., Lapshina E.D., Bleuten W., Martikainen P.J. 2007. Release of CO2 and CH4 from small wetland lakes in western Siberia // Tellus V. 59B. P. 788-796.
  41. Ringqvist L., Öborn I. 2002. Cooper and zinc adsorption onto poorly humified Sphagnum and Carex peat // Water Res. V. 36. № 9. P. 2233-2242.
  42. Robinson S.D., Moore T.R. 1999. Carbon and peat accumulation over the past 1200 years in a landscape with discontinuous permafrost, northwestern Canada // Global Biogeochem. Cy. V. 13. № 2. P. 591-601.
  43. Savelyeva A.V. Yudina N.V. 2003. Changing the chemical composition of the marsh plants during peat formation // Chemistry of Plant Raw Materials V. 3. P. 17-20.
  44. Savicheva O.G., Inisheva L.I. 2008. Biochemical activity of the peat soil of River Marsh ecosystem // Contemp. Prob. Ecol. V. 1. № 6. P. 666-672.
  45. Scheffer R.A., van Logtestijn R.S.P., Verhoeven T.A. 2001. Decomposition of Carex and Sphagnum litter in two mesotrophic fens differing in dominant plant species // Oikos V. 92. № 1. P. 44-54.
  46. Singh D.K., Kumar S. 2008. Nitrate reductase, arginine deaminase, urease a dehydrogenase activities in natural soil (ridges with forest) and in cotton safter cetamiprid treatments // Chemosphere. V. 71. P. 412-418.
  47. Sinsabaugh R.L. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil // Soil Biol. Biochem. V. 42. P. 391-404.
  48. Sinsabaugh R.L., Lauber Ch.L., Weintraub M.N., Ahmed B., Allison S.D., Crenshaw C.H., Contosta A.R., Cusack D., Frey S., Gallo M.E., Gartner T.B., Hobbie S.E., Holland K., Keeler B.L., Powers J.S., Stursova M., Takacs-Vesbach C., Waldrop M.P., Wallenstein M.D., Zak D.R., Zeglin L.H. 2008. Stoichiometry of soil enzyme activity at global scale // Ecol. Lett. V. 11. P. 1252-1264.
  49. Smolander A., Kitunen V. 2002. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species // Soil Biol. Biochem. V. 34. P. 651-660.
  50. Spoelstra J., Schiff S.L., Semkin R.G., Jeffries D.S., Elgood R.J. 2010. Nitrate attenuation in small temperate wetland following forest harvest // Forest Ecol. Manag. V. 259. P. 2333-2341.
  51. Steinmann P., Shotyk W. 1997. Chemical composition, pH, and redox state of sulfur and iron in complete vertical porewater profiles from two Sphagnum peat bogs, Jura Mountains, Switzerland // Geochim. Cosmochim. Acta. V. 61. P. 1143-1163.
  52. Szajdak L., Maryganova V., Meysner T., Tychinskaja L. 2002. Effect of shelterbelt on two kinds of soils on the transformation of organic matter // Environ. Int. V. 28. № 5. P. 383-392.
  53. Szajdak L.W., Gaca W. 2010. Nitrate reductase activity in soil under shelterbelt and adjoining cultivated field // Chem. Ecol. V. 26. № 4. P. 123-134.
  54. Szajdak L.W., Gaca W. 2011. Denitrification in shelterbelts and adjoining cultivated fields // Shelterbelts: efficient element of the landscape. Chemical and biochemical investigations of ground water and soil / Szajdak L.W. (Ed.). Saarbrücken, Germany: LAP Lambert Academic Publishing. P. 55-66.
  55. Szajdak L.W., Gaca W., Meysner T., Styła K., Maryganova V. 2011a. Enzymes activity and IAA contents in soils // Research methods in plant sciences, Vol. 2, Forestry and agroforestry / Narwal S.S. et al. (eds.). Houston, Texas LLC. USA: Studium Press. V. 1. P. 207-230.
  56. Szajdak L.W., Gaca W., Styła K., Meysner T. 2012a. Changes of enzyme activities in peat profile of Kusowo bog // Necessity of peatlands protection / Szajdak L.W., Gaca W., Meysner T., Styła K., Szczepański M. (eds.). Poznań: Wyd. Prodruk. P. 47-60.
  57. Szajdak L.W., Meysner T., Styła K. 2011b. Biochemical and chemical characterization of soils under shelterbelts and adjoining cultivated fields // Shelterbelts: efficient element of the landscape. Chemical and biochemical investigations of ground water and soil / Szajdak L.W. (Ed.). Saarbrücken, Germany: LAP Lambert Academic Publishing. P. 33-53.
  58. Szajdak L.W., Styła K., Gaca W., Meysner T., Szczepański M., Nowak J.S. 2013. Biochemical and chemical properties of commercial growing media, fen and raised bog // ProEnvironment. V. 6. № 14. P. 247-253.
  59. Szajdak L.W., Styła K., Meysner T., Gaca W., 2012b. Choice enzymes participating in oxydoreduction properties in peat profile of Stążka Mire // Necessity of peatlands protection / Szajdak L.W., Gaca W., Meysner T., Styła K., Szczepański M. (eds.). Poznań: Wyd. Prodruk. P. 61-75.
  60. Szajdak L.W., Szatyłowicz J., Kõlli R. 2011c. Peats and peatlands, physical properties // Encyclopedia of Agrophysics / Gliński J. et al. (eds.). Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland: Springer. P. 551-555.
  61. Ulanowski T.A., Branfireun B.A. 2013. Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland, Canada // Sci. Total Environ. V. 454-455. P. 211-218.
  62. van Breemen N. 1995. How Sphagnum bogs down other plants // Trends Ecol. Evol. V. 10. P. 270-275.
  63. von Post L. 1922. Sveriges Geologiska Undersöknings torvinventering och några av dess hitills vunna resultat // Svenska Mosskulturföreningens Tidskrift V. 36. P. 1-27. (in Swedish)
  64. Westbrook Ch.J., Devito K.J., Allan C.J. 2006. Soil N cycling in harvested and pristine Boreal forests and peatlands // Forest Ecol. Manag. V. 234. P. 227-237.
  65. Williams Ch.J., Shingara E.A., Yavitt J.B. 2000. Phenol oxidase activity in peatlands in New York State: response to summer drought and peat type // Wetlands V. 20. № 2. 416-421.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Шайдак Л.В., Лапшина Е.Д., Гака В., Стыла К., Мейснер Т., Шчепански М., Заров Е.А., 2016

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».