Features of carbon forms distribution in peat deposits of an oligotrophic bog in the Kondinsky Lakes Nature Park

Cover Page

Cite item

Full Text

Abstract

Wetland ecosystems play a key role in the global carbon cycle, accumulating significant amounts of carbon and influencing climate processes. The study of the dynamics of carbon accumulation, dissolved organic carbon (DOC) and the stratigraphy of peat deposits allows us to assess the impact of climate change on wetlands. The results of the work are important for predicting the response of ecosystems to global warming and developing measures for their conservation. In this study, we examined three stratigraphic profiles and the composition of dissolved organic matter (DOM) of undisturbed areas of an oligotrophic bog in the Kondinskie Lakes Nature Park.

The aim of this study was to assess the influence of the macrofossil and physicochemical parameters of the peat deposit on the amount and composition of dissolved organic carbon (DOC). To attain this aim, the following tasks were set: to determine the physicochemical characteristics of peat, study the stratigraphy of the peat deposit and determine the content of organic carbon, the concentration and composition of DOC in the peat deposit. Peat cores were collected in the spring (March 2023). The depth of the peat deposit varied within 3.5-4 m. In this paper, the following methods were used: stratigraphic method, peat moisture determination, elemental analysis of organic carbon, pH, determination of spectral characteristics, calculation of organic carbon reserves, moisture index (MI) and active soil richness and salinity (RS) indices according to the L.G. Ramensky scales. Peat moisture content was determined by the difference in the mass of the wet and dry sample. Total organic carbon content was determined by the EA-3000 elemental analyzer. Dissolved organic carbon was determined by a Flash-2000 elemental analyzer (Thermo Scientific, USA). A binocular microscope (10-40× magnification; Zeiss Axiostar, Jena, Germany) was used to determine plant residues and the degree of decomposition. The methodology was carried out in accordance with the protocols [Mauquoy, Van Geell, 2013] using a database of key samples, i.e. a collection of plant residues that were found in the region and used to determine the macrofossil of peat. The calculation was made in the integrated botanical information system IBIS 7.2. Measurements of spectral characteristics were made by a UV/Visible Spectrophotometer T8DCS (PERSEE, China) at wavelengths of 250, 254, 365, 400 and 600 nm. In the UV-Win program, a baseline determining zero light absorption was constructed in relation to deionized water. The pH of peat was measured potentiometrically (HANNA Instruments, Edge, USA) in a suspension of a peat sample. The data analysis was performed in R, utilizing cluster analysis and correlation testing.

The average concentration of organic carbon in peat is 50±9.8%, and the average reserve of organic carbon in a peat deposit is 205±21.73 kg/m2. In the stratigraphic profile of the peat deposit, a layer of eutrophic peat is identified and further replaced by mesotrophic, and then by oligotrophic peat, which is characterized by the predominance of sphagnum mosses (Sph. balticum, Sph. majus, Sph. divinum and Sph. fuscum). It was found that a high moisture index (MI) corresponds to a low value of the richness and salinity index (RS) according to the L.G. Ramenskii scale. DOC concentrations have a negative correlation coefficient with MI and a positive correlation coefficient with the content of cotton grass, Scheuchzeria and dwarf shrubs in the stratigraphic profile. A decrease in DOC concentrations is observed with the predominance of Sph. balticum and Sph. divinum. The average DOC concentration in the peat deposit is 241.27±52.48 mg/l. The SUVA254 index has maximum values of 0.55±0.5 on average at depths of 100-200 cm. With an increase in the content of Sph. fuscum and Sph. balticum, the SUVA254 index decreases to 0.36. The bottom layer of all profiles is characterized by minimum SUVA254 values due to the presence of mineral soil impurities. The coefficient of the average molecular weight of organic compounds over the entire depth has an average value of 4.8±0.8, and the average values of the humic substance ratio coefficient are 7.13±3.2.

About the authors

V. S. Shanyova

ФГБОУ ВО «Югорский государственный университет»

Author for correspondence.
Email: SHANYOVA.VIKA@mail.ru
Russian Federation, г. Ханты-Мансийск

V. R. Batrshina

ФГБОУ ВО «Югорский государственный университет»

Email: lera.batrshina@icloud.com
Russian Federation, г. Ханты-Мансийск

S. E. Rakhova

ФГБОУ ВО «Югорский государственный университет»

Email: sonya.rahova00@mail.ru
Russian Federation, г. Ханты-Мансийск

References

  1. Аgren A., Buffam I., Berggren M., Bishop K., Jansson M., Laudon H. 2008. Dissolved organic carbon characteristics in boreal streams in a forest-wetland gradient during the transition between winter and summer. Journal of Geophysical Research: Biogeosciences, 113(G3). doi: 10.1029/2007JG000674
  2. Aitkenhead J., Hope D., Billett M. 1999. The relationship between dissolved organic carbon in stream water and soil organic carbon pools at different spatial scales. Hydrological Processes, 13(8): 1289–1302. doi: 10.1002/(SICI)1099-1085(19990615)13:8<1289: AID-HYP766>3.0.CO; 2-M
  3. Armstrong A., Holden J., Luxton K., Quinton J. 2012. Multi-scale relationship between peatland vegetation type and dissolved organic carbon concentration. Ecological Engineering. 47: 182–188. doi: 10.1016/j.ecoleng.2012.06.027.
  4. Bai H., Jiang Z., He M., Ye B., Wei S. 2018. Relating Cd2+ binding by humic acids to molecular weight: A modeling and spectroscopic study. Journal of Environmental Sciences, 70: 154–165. doi: 10.1016/j.jes.2017.11.028.
  5. Batrshina V., Zarov E. 2023. Comparison of carbon stocks in the territories of Mukhrino station and Kondinskie lakes natural park. Conference: Youth science of the north, Yugra State University, Khanty-Mansiysk (in Russia). [Батршина В. Р., Заров Е. А. 2023. Сравнение запасов углерода на территориях стационара «Мухрино» и природного парка «Кондинские озера». Югорский государственный университет конференция: Молодёжная наука Севера]
  6. Bennett K.D. 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist, 132: 155–170. URL: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=2007579.
  7. Bespalova T. 2022. Inventory of rare and red-listed species of higher vascular plants on the territory of the natural park ‘Kondinskie lakes’. In: Scientific research and environmental monitoring in specially protected natural areas of Russia and adjacent countries, a collection of the All-Russian conference with international participation, dedicated to the 90th anniversary of the Central Forest State Natural Biosphere Reserve, 150th anniversary of the founder and first director Grigory Leonidovich Grave, 140th anniversary of the ecologist, Professor Vladimir Vladimirovich Stanchinsky. Limited Liability Company Partnership of Scientific Editions KMK, 256–262 (in Russia). [Беспалова, Т. Л. Инвентаризация редких и краснокнижных видов высших сосудистых растений на территории природного парка «Кондинские озера» // Научные исследования и экологический мониторинг на особо охраняемых природных территориях России и сопредельных стран : сборник Всероссийской конференции с международным участием, посвященной 90-летию организации Центрально-Лесного государственного природного биосферного заповедника, 150-летию основателя и первого директора Григория Леонидовича Граве, 140-летию эколога, профессора Владимира Владимировича Станчинского. Общество с ограниченной ответственностью Товарищество научных изданий КМК, С. 256–262]
  8. Bolin B., Degens E., Kempe S., Ketner P. 1979. The global carbon cycle. Scope 13. Quarterly Journal of the Royal Meteorological Society, 1. doi: 10.1002/QJ.49710644716
  9. Clark J., Chapman, P., Adamson J., Lane S. 2005. Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils. Global Change Biology, 11(5), 791–809. doi: 10.1111/j.1365-2486.2005.00937.x
  10. Chin Y., Aiken G., Danielsen K. 1997. Binding of pyrene to aquatic and commercial humic substances: the role of molecular weight and aromaticity. Environ. Sci. Technol, 31: 1630–1635. doi: 10.1021/es960404k
  11. Dalva M., Moore T. 1991. Sources and sinks of dissolved organic carbon in a forested swamp catchment. Biogeochemistry, 15(1). doi: 10.1007/bf00002806
  12. Freeman C., Evans C., Monteith D., Reynolds B., Fenner N. 2001. Export of organic carbon from peat soils. Nature 412: 785. doi: 10.1038/35090628
  13. Freeman C., Fenner N., Ostle N., Kang H., Dowrick D., Reynolds B., Hudson J. 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature, 430 (6996): 195–198. doi: 10.1038/nature02707
  14. Frey K., Smith L. 2005. Amplified carbon release from vast West Siberian peatlands by 2100. Geophysical research letters, 32(9). doi: 10.1029/2004GL022025
  15. Golovackaya E., Dyukarev E., Veretennikova E., Nikonova L., Smirnov S. 2022. ASSESSMENT OF CARBON Balance dynamics in bogs of the southern taiga subzone of Western Siberia (Tomsk region). Soils and the environment, № 4 (Last accessed 30.01.2025) (in Russian). [Головацкая Е., Дюкарев Е., Веретенникова Е., Никонова Л., Смирнов С. 2022. Оценка динамики баланса углерода в болотах южнотаежной подзоны Западной Сибири (Томская область) // Почвы и окружающая среда. № 4. (дата обращения: 30.01.2025)]. URL: https://cyberleninka.ru/article/n/otsenka-dinamiki-balansa-ugleroda-v-bolotah-yuzhnotaezhnoy-podzony-zapadnoy-sibiri-tomskaya-oblast
  16. Golovackaya E., Smirnova S. 2021. Geochemical peculiarities of peat deposits of oligotrophic bogs in the southern taiga zone of Western Siberia. Geochemistry, 66(6): 562–576 (in Russian). [Головацкая Е. А., Смирнова С. В. Геохимические особенности торфяных залежей олиготрофных болот южно-таежной зоны Западной Сибири // Геохимия, 66(6): 562–576].
  17. Grimm E. 1987. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences, 13: 13–35 URL: https://typeset.io/papers/coniss-a-fortran-77-program-for-stratigraphically-289ieryrkl
  18. Halaś A., Lamentowicz M., Łuców D., Słowiński M. 2023. Developing a new testate amoeba hydrological transfer function for permafrost peatlands of NW Siberia. Quaternary Science Reviews, 308: 108067. doi: 10.1016/j.quascirev.2023.108067
  19. Inisheva L., Yudina N., Sokolova I. 2013. Dynamics of carbon-containing compounds in the waters of an oligotrophic bog. Bulletin of Tomsk State Pedagogical University, 8(136): 126–130 (in Russian). [Инишева Л. И., Юдина Н. В., Соколова И. В. Динамика углеродсодержащих соединений в водах олиготрофного болота // Вестник Томского государственного педагогического университета. 2013. №. 8 (136). С. 126–130].
  20. Lee H., Romero J. (eds.). 2023. IPCC. Core Writing Team, Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 184 pp. doi: 10.59327/IPCC/AR6-9789291691647
  21. Juggins, S. 2017. rioja: Analysis of Quaternary Science Data. R package version (0.9-21). URL: http://cran.r-project.org/package=rioja (Last accessed 20.06.2024).
  22. Kalbitz K., Geyer S. 2002. Different effects of peat degradation on dissolved organic carbon and nitrogen. Organic Geochemistry, 33(3): 319–326. doi: 10.1016/S0146-6380(01)00163-2
  23. Kolka R., Weishampel P., Fröberg M. 2008. Measurement and importance of dissolved organic carbon. In Field Measurements for Forest Carbon Monitoring; Hoover C.M., Ed.; Springer: Dordrecht, The Netherlands, pp. 32–58.
  24. Korotkikh N., Bespalova T. 2018. Flora and vegetation of the L.F. Stashkevich Nature Park «Kondinskie Lakes», Khanty-Mansiysk Autonomous Okrug - Yugra. In: Ecology and Geography of Plants and Plant Communities : Proceedings of the IV International Scientific Conference, pp. 471–475, Ekaterinburg (in Russian) [Коротких Н. Н., Беспалова Т. Л. 2018. Флора и растительность природного парка «Кондинские озера» им. Л.Ф. Сташкевича, Ханты-Мансийский автономный округ – Югра // Экология и география растений и растительных сообществ. Екатеринбург, С. 471–475].
  25. Korotkikh N., Bespalova T., Butunina E., Yesengeldenova A. 2022. Floristic studies in the natural park ‘Kondinskie lakes’ named after L.F. Stashkevich. In: Current state and prospects of development of the network of specially protected natural areas in industrially developed regions. Proceedings of the II All-Russian conference dedicated to the 25th anniversary of the natural park ‘Numto’: a collection of scientific articles, Beloyarsky, 17 March 2022 (D.V. Moskovchenko ed.), pp. 64–73, Department of subsoil use and natural resources of Khanty-Mansiysk Autonomous Okrug-Yugra; FGBUN FIC ‘Tyumen Scientific Centre of the Siberian Branch of the Russian Academy of Sciences’; Budgetary Institution of Khanty-Mansiysk Autonomous Okrug-Yugra Nature Park ‘Numto’, Limited Liability Company ‘Assorti’, Ekaterinburg (in Russian) [Н. Н. Коротких, Т. Л. Беспалова, Е. А. Бутунина, А. Ю. Есенгельденова. 2022. Флористические исследования в природном парке «Кондинские озера» им. Л.Ф. Сташкевича // Современное состояние и перспектива развития сети особо охраняемых природных территорий в промышленно развитых регионах: Материалы II Всероссийской конференции, посвященной 25-летию природного парка «Нумто»: сборник научных статей, Белоярский, 17 марта 2022 года, отв. ред. Д.В. Московченко; Департамент недропользования и природных ресурсов Ханты-Мансийского автономного округа – Югры; ФГБУН ФИЦ «Тюменский научный центр СО РАН»; Бюджетное учреждение Ханты-Мансийского автономного округа – Югры «Природный парк «Нумто». Екатеринбург: Общество с ограниченной ответственностью «Ассорти», С. 64–73].
  26. Kosykh N., Koronatova N., Lapshina E., Filippova N., Vishnyakova E., Stepanova V. 2017. Linear growth and production of Sphagnum mosses in the middle taiga zone of West Siberia // Environmental dynamics and global climate change, 8(1): 3–13. doi: 10.17816/edgcc813-13
  27. Leenheer J. A., Croué J. P. 2003. Peer reviewed: characterizing aquatic dissolved organic matter. Environmental science & technology. 37(1): 18A-26A. doi: 10.1021/es032333c
  28. Lapshina E., Korotkikh N., Bespalova T. 2020. Rare mosses of the Kondinskie lakes natural park named after lf Stashkevich. Bulletin of Nizhnevartovsk State University, 1: 74–80. doi: 10.36906/2311-4444/20-1/12
  29. Leonova O. 2023. Estimation of carbon stocks in peat deposits of different genesis in bogs of the northeast of the middle russian uplands. Izvestiya Tula State University. Natural Sciences, 1: 129–138. (in Russian). [Леонова О. А. 2023. Оценка запасов углерода в торфяных залежах различного генезиса на болотах северо-востока среднерусской возвышенности // Известия Тульского государственного университета. Естественные науки. №. 1. С. 129–138].
  30. Levasheva M., Bespalova T., Popova T., Zherebyat'eva N. 2010. Use of recreational resources of the territory of the natural park «Kondinskie lakes». In: Collection of materials VIII Yugra readings devoted to the 77th anniversary of the Khanty-Mansiysk District-Yugra «Nature Management: state, problems and prospects». рр. 140–147 Khanty-Mansiysk (in Russian). [Левашева М.В., Беспалова Т.Л., Попова Т.В., Жеребятьева Н.В. Использование рекреационных ресурсов территории природного парка «Кондинские озера» // Сборник материалов VIII «Югорские чтения, посвященные 77-летию Ханты-Мансийского округа – Югры «Природопользование: состояние, проблемы и перспективы». Ханты- Мансийск, 2010. С. 140–147].
  31. Lou T., Xie H. 2006. Photochemical alteration of the molecular weight of dissolved organic matter. Chemosphere, 65(11): 2333–2342. doi: 10.1016/j.chemosphere.2006
  32. Macdonald G., Beilman D., Kremenetski K., Sheng Y, Smith L., Velichko AA. 2006. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science, 314(5797): 285–288. doi: 10.1126/science.1131722
  33. Machado W., Franchini J. C, de Fátima Guimarães M., Tavares Filho J. 2020. Spectroscopic characterization of humic and fulvic acids in soil aggregates, Brazil. Heliyon. 6(6). doi: 10.1016/j.heliyon.2020.e04078
  34. Marcisz K., Jassey V., Kosakyan A., Krashevska V., Lahr D., Lara E., Lamentowicz Ł., Lamentowicz M., Macumber A., Mazei Y., Mitchell E., Nasser N., Patterson R., Roe H., Singer D., Tsyganov A., Fournier B. 2020. Testate amoeba functional traits and their use in paleoecology. Frontiers in Ecology and Evolution, 8: 575966. doi: 10.3389/fevo.2020.575966
  35. Matukhin R., Matukhina V., Vasiliev I., Mikhantieva L., Popova G., Markov D., Ospennikova L., Skobeeva, E. 2000. Classification of Peat Types and Peat Deposits of West Siberia. NITS OIGGM, 1: 90.
  36. Mauquoy D., Van Geel B. 2013. Plant macrofossil methods and studies: Mire and peat macros. Encycl. Quat. Sci, 113: 637–656. doi: 10.1016/B978-0-444-53643-3.00206-5
  37. Minayeva T., Sirin A. 2012. Peatland biodiversity and climate change. Biology Bulletin Reviews, 2(2):164–175. doi: 10.1134/s207908641202003x
  38. Moore T. 1987. Patterns of dissolved organic matter in subarctic peatlands. Earth Surface Processes and Landforms, 12: 387–397. doi: 10.1002/esp.3290120405
  39. Olefeldt D., Roulet T. 2012. Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. Journal of Geophysical Research: Biogeosciences, 117(G1). doi: 10.1029/2011JG001819
  40. Peacock M., Freeman C., Gauci V., Lebron I., Evans C. D. 2015. Investigations of freezing and cold storage for the analysis of peatland dissolved organic carbon (DOC) and absorbance properties. Environmental Science: Processes & Impacts. 17(7): 1290–1301. doi: 10.1039/C5EM00126A
  41. Peuravuori J., Pihlaja K. 1997. Molecular size distribution and spectroscopic properties of aquatic humic substances. Analytica Chimica Acta, 337: 133–149. doi: 10.1016/S0003-2670(96)00412-6
  42. Pittaway P., Eberhard F. A. 2014. UV absorbance test for measuring humified organic carbon in soil. Proceedings of the 36th Annual Conference of the Australian Society of Sugar Cane Technologists (ASSCT 2014), 36: 229-235.
  43. R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/ (Last accessed 20.06.2024).
  44. Rakhova S. 2023. Comparison of the spectral characteristics of dissolved organic matter in the upper swamp.In: Youth Science of the North: Collection of materials of the I International Scientific and Practical Conference, 148–153 pp. (in Russian) [Рахова С.Е. 2023. Сравнение спектральных характеристик растворенного органического вещества на верховом болоте // Молодёжная наука Севера: Сборник материалов I Международной научно-практической конференции. С. 148–153].
  45. Rakhova S. 2024. Seasonal dynamics of dissolved organic matter composition of an upland bog. In: West Siberian peatlands and the carbon cycle: past and present, Proceedings of the Seventh International Field Symposium, Khanty-Mansiysk, 15-27 August 2024. National Research Tomsk State University, Tomsk (in Russian) [Рахова С. 2024. Сезонная динамика состава растворенного органического вещества верхового болота // Западно-Сибирские торфяники и цикл углерода: прошлое и настоящее: Материалы Седьмого международного полевого симпозиума, Ханты-Мансийск, 15–27 августа 2024 года. Томск: Национальный исследовательский Томский государственный университет]
  46. Savicheva O., Inisheva L. 2003. Biochemical activity of peats of different macrofossil. Chemistry of plant raw materials, 3. (Last accessed 19.06.2024), (in Russian). [Савичева О.Г., Инишева Л.И. Биохимическая активность торфов разного ботанического состава // Химия растительного сырья. 2003. № 3. (дата обращения: 19.06.2024)]. URL: https://cyberleninka.ru/article/n/biohimicheskaya-aktivnost-torfov-raznogo-botanicheskogo-sostava
  47. Scott M., Jones M., Woof C., Tipping E. 1998. Concentrations and fluxes of dissolved organic carbon in drainage water from an upland peat system. Environment International, 24(5-6): 537–546. doi: 10.1016/S0160-4120(98)00043-9
  48. Shanyova V. 2023. Approaches to determining the content of dissolved organic carbon in peat // Business transformation: improvement management, 1(2): 30-36] (in Russian) [Шанёва В.С. 2023. Подходы к определению содержания растворенного органического углерода в торфе // Бизнес-трансформация: управление улучшениями, 1(2): 30-36].
  49. Sheng Y., Smith L., MacDonald G., Kremenetski K., Frey K., Velichko A., Lee M., Beilman D., Dubinin P. 2004. A High-Resolution GIS Based Inventory of the West Siberian Peat Carbon Pool. Global Biogeochemical Cycles, 18 (GB3004): 1–14. doi: 10.1029/2003GB002190
  50. Simpson G., Oksanen. 2020. analogue: Analogue and weighted averaging methods for palaeoecology. R package version 0.17-4. URL: https://cran.r-project.org/web/packages/analogue/analogue.pdf (Last accessed 20.06.2024).
  51. Stavishenko I.V. 2008. Monitoring of communities of wood-destroying fungi in the Kondinskiye Lakes Nature Park. Siberian Ecological Journal, 15(4): 645–654 (in Russian). [Ставишенко И.В. 2008. Мониторинг сообществ дереворазрушающих грибов природного парка "Кондинские озера" // Сибирский экологический журнал. Т. 15. №. 4. С. 645–654].
  52. Stepanova V. А. 2012. Features of the macronutrient chemical composition of the soils of the upper swamps of the middle taiga of Western Siberia : Abstract dis. cand. biol. scences. Tomsk. Tomsk State Pedagogical University 22 pp. (in Russian) [Степанова В.А. 2012. Особенности макроэлементного химического состава почв верховых болот средней тайги Западной Сибири. Автореф. дисс. канд. биол. наук. Томск. Томский государственный педагогический университет. 22 c. URL: https://vital.lib.tsu.ru/vital/access/services/Download/vtls:000427276/SOURCE1
  53. Syr'eva V. 2017. Ecological framework of the natural park «Kondinskie lakes» as a basis for biodiversity conservation: Master's thesis. Tyumen. Institute of Earth Sciences UTMN. 46 pp. (in Russian). [Сырьева В. С. 2017. Экологический каркас природного парка «Кондинские озера» как основа для сохранения биоразнообразия: магистерская диссертация. Тюмень. Институт Наук о Земле ТЮМГУ. 46 с.] URL: https://elib.utmn.ru/jspui/bitstream/ru-tsu/11698/1/Syreva_VKR.pdf
  54. Thurman E. Organic geochemistry of natural waters. 1985. Developments in Biogeochemistry, 2: 497 p.
  55. Traversa A., D'Orazio V., Mezzapesa G.N., Bonifacio E., Farrag K., Senesi N., Brunetti G. 2014. Chemical and spectroscopic characteristics of humic acids and dissolved organic matter along two Alfisol profiles. Chemosphere. 111: 184–94. doi: 10.1016/j.chemosphere.2014.03.063
  56. Tsyganov A., Zarov, E., Mazei Y., Kulkov M., Babeshko K., Yushkovets S., Payne R., Ratcliffe J., Fatyunina Y., Zazovskaya E., Lapshina E. 2021. Key periods of peatland development and environmental changes in the middle taiga zone of Western Siberia during the Holocene. Ambio, 50: 1896–1909. doi: 10.1007/s13280-021-01545-7
  57. Turunen J., Tahvanainen Т., Tolonen K., Pitkänen A. 2001. Carbon accumulation in West Siberian Mires, Russia Sphagnum peatland distribution in North America and Eurasia during the past 21,000 years. Global biogeochemical cycles. 15(2): 285–296. doi: 10.1029/2000GB001312
  58. Uyguner C., Bekbolet M. 2005. Implementation of spectroscopic parameters for practical monitoring of natural organic matter. Desalination, 176(1-3): 47–55. doi: 10.1016/j.desal.2004.10.027
  59. Voronov A., Mihajlova G. 1971. Modern vegetation. Atlas of the Tyumen Oblast, 23(2) (in Russian). [Воронов А. Г., Михайлова Г. А. 1971. Современная растительность // Атлас Тюменской области. Вып. І. М.; Тюмень: ГУГК, 1971. С. 23 (2)].
  60. Waddington J., Roulet N. 1997. Groundwater flow and dissolved carbon movement in a boreal peatland. Journal of Hydrology, 191(1-4): 122–138. doi: 10.1016/S0022-1694(96)03075-2
  61. Weishaar J., Aiken G., Bergamaschi B., Fram M., Fujii R., Mopper, K. 2003. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environmental Science & Technology, 37(20): 4702–4708. doi: 10.1021/es030360x
  62. Wickham H. 2016. Data Analysis. In: ggplot2. Use R! Springer, Cham. doi: 10.1007/978-3-319-24277-4_9
  63. William C., Timothy J., Vijay M. 2016. Using Dissolved Organic Carbon Concentration and Character Data to Assess Land Use Change Effects on Coastal Waters. In: South Carolina Water Resources Conference.
  64. Worrall F., Gibson H., Burt T. 2008. Production vs. solubility in controlling runoff of DOC from peat soils – The use of an event analysis. Journal of hydrology, 358(1-2): 84–95. doi: 10.1016/j.jhydrol.2008.05.037
  65. Yu Z., Loise J., Brosseau D., Beilman D., Hunt S. 2010. Global peatland dynamics since the Last Glacial Maximum. Geophysical research letters, 37(13). doi: 10.1029/2010GL043584
  66. Zarov, E.A. 2013 Types of peat from upland bogs and their physico-chemical properties (on the example of the Mukhrino marsh massif, Khanty-Mansiysk Autonomous Okrug - Yugra). In: V.I. Shpilman "Problems of regional nature management and the history of geological prospecting in Western Siberia", Khanty-Mansiysk: 118–121 (in Russian) [Заров, Е. А. 2013. Виды торфа верховых болот и их физико-химические свойства (на примере болотного массива Мухрино, ХМАО-Югра) // ВИ Шпильмана «Проблемы регионального природопользования и история геологического поиска в Западной Сибири», Ханты-Мансийск: 118–121].
  67. Zarov E., Lapshina E., Kuhlmann I. and Schulze Ernst-Detlef. 2023. Carbon Accumulation and the Possibility of Carbon Losses by Vertical Movement of Dissolved Organic Carbon in Western Siberian Peatlands. Forests, 14(12): 2393. doi: 10.3390/f14122393
  68. Zemcov A., Mezencev A., Inisheva L. 1998. Bogs of Western Siberia: their role in the biosphere, SibNIIT, TSU, Tomsk, 72 p. (in Russian) [Земцов А., Мезенцев А., Инишева Л. 1998. Болота Западной Сибири: их роль в биосфере. Томск: ТГУ, СибНИИТ, 72 с.].
  69. Zverev А.А. 2007. Information technologies in vegetation research. Innovative educational program, Federal Agency for Education, Tomsk State University, TML-Press. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000247692] (in Russian) [Зверев А.А. 2007. Информационные технологии в исследованиях растительного покрова: учебное пособие. Инновационная образовательная программа / Федеральное агентство по образованию, Томский гос. ун-т. Томск : ТМЛ-Пресс. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000247692].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Macrofossil and physicochemical parameters of the peat core "Cond-1" (Сорг – organic carbon (%), Запас – carbon reserve (kg/m²); УВ – moisture (moisture level); БЗ – active soil richness and salinization (richness level); РОУ – dissolved organic carbon (mg/l); SUVA – aromaticity index; МВ – average molecular weight coefficient; ГВ – humic substances ratio coefficient; pH – hydrogen index; Влажность (%) – humidity (%), Степень разложения (%) – decomposition degree (%).

Download (544KB)
3. Fig. 2. Macrofossil and physicochemical parameters of the peat core "Cond-2" (Сорг – organic carbon (%), Запас – carbon reserve (kg/m²); УВ – moisture (moisture level); БЗ – active soil richness and salinization (richness level); РОУ – dissolved organic carbon (mg/l); SUVA – aromaticity index; МВ – average molecular weight coefficient; ГВ – humic substances ratio coefficient; pH – hydrogen index; Влажность (%) – humidity (%), Степень разложения (%) – decomposition degree (%).

Download (556KB)
4. Fig. 3. Macrofossil and physicochemical parameters of the peat core "Cond-3" (Сорг – organic carbon (%), Запас – carbon reserve (kg/m²); УВ – moisture (moisture level); БЗ – active soil richness and salinization (richness level); РОУ – dissolved organic carbon (mg/l); SUVA – aromaticity index; МВ – average molecular weight coefficient; ГВ – humic substances ratio coefficient; pH – hydrogen index; Влажность (%) – humidity (%), Степень разложения (%) – decomposition degree (%).

Download (516KB)

Copyright (c) 2025 Shanyova V.S., Batrshina V.R., Rakhova S.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».