Modern spore-pollen spectra of the Altai-Sayan region, their relationship with climate and transfer functions for palaeoclimate reconstructions

Cover Page

Cite item

Full Text

Abstract

Quantitative reconstruction of paleoclimate based on spore-pollen data remains an important task in the study of long-term climate dynamics. The construction of transfer pollen-climate functions on a training set of modern spore-pollen spectra is an effective method for such studies, especially necessary in areas that are poorly supported by numerical reconstructions of paleoclimate, which includes Siberia. To solve this problem, a series of 145 modern spore-pollen spectra were collected during summer expedition at different years from various phytocenoses (plant functional types) representing biomes of: mountain forest, lowland forest, forest-steppe, steppe, desert steppe and alpine tundra-steppe on the territory of the Altai-Sayan mountain region and adjacent areas of the plains (Fig. 1). At each sampling point, from 1 to 6 samples were taken in the form of moss pollsters or surface detritus, geographic coordinates were noted, and a geobotanical description of the vegetation was made. After physicochemical sample preparation, spore-pollen analysis was carried out using generally accepted methods. In common 143 pollen types were identified in study set of modern spore-pollen spectra. To create the transfer pollen-climate function, first of all, we studied by using the method of multivariate statistical analysis the relationship between the composition of the obtained spore-pollen spectra and the composition of maternal phytocenoses (based on geobotanical descriptions made during the collecting of samples), as well as with climatic parameters that could influence the composition of spores-pollen spectra. The results of constrained cluster analysis (Fig. 2) showed that each group of spore-pollen spectra characteristic of a particular biome is distinguished by a separate subcluster of the cluster tree, which confirms the possibility of identifying biomes by spore-pollen spectra. In addition, specific phytocoenoses characterizing plant functionl types are also distinguished by independent clusters.

To study the general structure of the calibration set of modern spore-pollen spectra, a PCA analysis of sampling points (grouped by biomes) and pollen taxa was carried out using the “stats” package basic for “r”, as well as the “vegan” packages 2.6-4 [Oksanen et al., 2018] and “ellipse” 0.5.0 [Murdoch et al., 2018]. Based on the distribution of species and their ecology, axis 1 of the PCA biplot (Fig. 3) reflects the moisture gradient, and axis 2 is associated with the temperature gradient. The pollen types were distributed according to these gradients. The fields of the corresponding biomes are highlighted, by different marks united by colored ovals, which are shown in Fig. 3. Thus, in the most humid and warm conditions, in the upper right quarter of the PCA graph there are located pollen types character for biomes of lowland forests and mountain dark coniferous and “chern’” forests with abundance of fir (Abies sibirica), birch (Betual pendula) and linden (Tilia) with tall grass and fern grass cover. In cold and dry conditions (lower left quarter of the PCA plot) pollen types of the alpine tundra-steppe (yellow oval) and desert steppe (pink oval) biomes are located.

 To identify the influence of climatic factors on the variability of spore-pollen spectra, RDA analysis was performed on six factors: MAP - mean annual precipitation; TJAN - mean temperature of January; TJUL - mean temperature of July; MAT - mean annual temperature; Altitude and GCI - index continentality of Garchinski. Inflation Factors test showed that Altitude and GCI correlate positive with each other and strongly negative with MAT, hence they are not recommended for transfer function construction. The RDA plot (Fig. 4) revealed a positive correlation between MAP and TJAN, as well as Abies sibirica pollen and spores of ferns (Monolete), which reflects the spreading of dark coniferous tall-herb-fern mountain taiga and “chern’” forests with fir, aspen, and linden on the western macroslope of the Kuznetski Alatau Mountains in an area with maximum precipitation and milder winters with abundant snow cover. A positive correlation was found between the Altitude factor and pollen of Pinus sibirica, Betula nana and Cyperaceae, reflecting the ecological conditions of the upper part of the mountain forest belt and the subalpine belt of sparse cedar forests with thickets of Betula nana, sedges and areas of alpine meadows. The pollen of xerophytic plants, from taxa Artemisia and Chenopodiaceae is strongly correlates with GCI. Pollen of Poaceae is equally correlates with GCI and Altitude factors, reflecting the distribution of grasses in both high-mountain tundra and steppe. Tree pollen of Pinus sylvestris and Betula pendula has maximum positive correlation with MAT, while with TJAN+MAP and TJUL these species correlate less strong.  

The cluster analysis, as well as PCA and RDA analyses showed that the composition of the studied spore-pollen spectra adequately reflects not only the peculiarities of the altitudinal belts (biomes) of the vegetation cover and the composition of the parent phytocoenoses (plant functional types), but also the temperature-humidity gradients existing in this area. Consequently, despite the complex structure of the vegetation cover of the mountain region, the presented series of spore-pollen spectra can be used as a training set in the construction of transfer functions for their use in paleoreconstructions based on paleopalynological data.

Transfer function modeling was performed with the R package “rioja” 1.0-6 using the numerical methods WA, WA-PLS, MAT*, MLRC - evaluated by Bootstrap Cross-Validation to identify the strongest model for paleo reconstructions [Hall & Wilson, 1991; Payne et al., 2012]. Statistical analysis showed that for the presented set of modern spore-pollen spectra a significant models can be built for the factors TJUL, MAT, TJAN and MAP. Of the 4 types of models (based on WA, WAPLS, MAT* and MLRC methods) which we created for the 5 variables MAT, MAP, TJAN, TJUL and GCI for the presented set of modern spore-pollen spectra, the best model results were obtained by the MAT* method for the factors MAT, MAP, TJAN and GCI (Table 1). However, the transfer function model for TJUL created by the MLRC method (R2=0.7268 and RMSE=1.68°C) was the strongest. By performance characteristics our TJUL model is comparable to previously published models by other authors created for reconstruction the mean July temperature of the Arctic zone of Siberia [Klemm et al., 2013], and for reconstruction the vegetation cover characteristics such as afforestation [Tarasov et al., 2007; Zanon et al., 2018], NDVI [Liu et al., 2013; Chen et al., 2019], and fractional vegetation cover [Li et al., 2024].

Further statistical analysis of the data and comparison of the results with those published for the neighboring region of the central Tienshan Mountains [Li et al., 2024] showed that the leading climatic factor controlling the variability of spore-pollen spectra in the Altai-Sayan mountains of southern Siberia is the temperature of the growing season expressed as TJUL, while in the mountains of the central Tienshan such a factor is the annual precipitation - MAP. This reflects well the natural geographical patterns of vegetation-climate dependence in the more northern, humid and cold Altai and in the more southern hot and continental climate of Tienshan. Taking into account the different leading factors controlling the variability of modern spore-pollen spectra and vegetation in the two regions under consideration, the newly created transfer functions can be recommended for paleoclimatic reconstructions in the Altai-Sayan region.

About the authors

T. A. Blyakharchuk

Институт мониторинга климатических и экологических систем СО РАН; Томский государственный университет

Email: blyakharchuk@mail.ru
Russian Federation, Томск; Томск

N. V. Shefer

Томский государственный университет

Email: blyakharchuk@mail.ru
Russian Federation, Томск

E. A. Lukanina

Georg-August-Universität

Email: blyakharchuk@mail.ru
Germany, Göttingen

M. van Hardenbroek

Newcastle University

Email: blyakharchuk@mail.ru
United Kingdom, Newcastle

S. Juggins

Newcastle University

Email: blyakharchuk@mail.ru
United Kingdom, Newcastle

D. Zhang

The Regional Environmental Centre for Central Asia, Chinese Academy of Sciences; Institute of Desert Meteorology

Author for correspondence.
Email: blyakharchuk@mail.ru
China, Urumqi; Urumqi

References

  1. Abatzoglou J.T., Williams A.P., Barbero R. 2019. Global emergence of anthropogenic climate change in fire weather indices. Geophysical Research Letters, 46 (1): 326-336.
  2. Binney H., Edwards M., Macias-Fauria M., Lozhkin A., Anderson P., Kaplan J. O., Andreev A., Bezrukova E., Blyakharchuk T., Jankovska V., Khazina I., Krivonogov S., Kremenetski K., Nield J., Novenko E., Ryabogina N., Solovieva N., Willis K., Zernitskaya V. 2017. Vegetation of Eurasuia from the last glacial maximum to present: Key biogeographic patterns. Quaternary Science Reviews, 157: 80-97. DOI: http://dx.doi.org/10.1016/j.quascirev.2016.11.022.
  3. Birks H.J. B. 1995. Quantitative palaeoenvironmental reconstructions. In: Statistical Modelling of Quaternary Science Data. Technical Guide (D. Maddy, J.S. Brew, eds.), vol. 5. pp. 161-254. Quaternary Research Association, Cambridge.
  4. Bobrov A.E., Kupriyanova L.A., Litvintseva M.V., Tarasevich V.F. Spores of ferns and pollen of pteridophyta and monocotyledonous plants of the flora of the European part of the USSR. Nauka, L., 1983. 208 pp. [Бобров А.Е., Куприянова Л.А., Литвинцева М.В., Тарасевич В.Ф. 1983. Споры папоротникообразных и пыльца голосеменных и однодольных растений флоры европейской части СССР. Ленинград: Наука. 208 с.].
  5. Brushlinsky N.N., Wagner P., Sokolov S.V. 2003. The problem of fires in the world at the beginning of the XXI century. Fire and Explosion Safety, 12 (1): 7–14 (in Russian). [Брушлинский Н.Н., Вагнер П., Соколов С.В. 2003. Проблема пожаров в мире в начале XXI столетия // Пожаровзрывобезопасность Т. 12, № 1. С. 7-14].
  6. Cao X., Tian F., Xu Q., Ni J., Herzshuh U. 2022. Modern Pollen Dataset for Asia. National Tibetan Plateau Data Center. URL: https://doi.org/10.11888/Paleoenv.tpdc.272378 (Last accessed 30.09.2024).
  7. Chevalier M., Davis B.A.S., Heiri O., Seppä H., Chased B.M. Gajewski K., Lacourse T., Telford R.J., Finsinger W., Guiot J., Kühl N., Maezumi S.Y., Tiptonm J.R., Carter V.A., Brussel T., Phelps L.N., Dawson A., Zanon M., Vallé F., Nolan C., Mauri A., de Vernal A., Izumi K., Holmström L., Marsicek J., Goring S., Som mer P.S., Chaput M., Kupriyanov D. 2020. Pollen-based climate reconstruction techniques for late Quaternary studies. Earth-Science Reviews, 210: 103384. https://doi.org/10.1016/l.earscirev.2020.103384.
  8. Chen D.X., Wang W., Liu L.N., Jiang Y.J., Li Y.Y., Niu Z.M., Ma Y.Y., He J. 2019. Lake central surface sedinent based pollen-vegetation cover transfer functions and its application in Inner Mongolia Plateau and adjacent area. Arid Land Geography 42 (5): 1011-1022.
  9. Chytrý M., Danihelka J., Kubešová S., Lustyk P., Ermakov N., Hájek M., Hájková P., Kočí M., Otýpková Z., Roleček J., Řezníčková M., Šmarda P., Valachovič M., Popov D., & Pišút I. 2008. Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecology 196: 61-83.
  10. Gallego-Sala A. V. et al. (75 coauthors). 2018 Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change 8: 907-913.
  11. Gorzyński L. 1920. Sur le calcul du degreè du continentaliasme et son application dans la climatologie. Geografiska Annaler, 2: 324-331.
  12. Grichuk V.P., Zaklinskaya E.D. 1948. Analysis of fossil pollen and spores and their application in paleogeography. Geografgiz, Moscow, 223 pp. (in Russian). [Гричук В.П., Заклинская Е.Д. 1948. Анализ ископаемой пыльцы и спор и их применение в палеогеографии. Москва: Географгиз. 223 с.].
  13. Gvozdetsky N.A., Mikhailov N.I. 1978. Physical Geography of the USSR. Asian part: textbook for students of geographical faculty of universities. Mysl’, Moscow, 512 pp. (in Russian). [Гвоздецкий Н.А., Михайлов Н.И. 1978. Физическая география СССР. Азиатская часть : учебник для студентов географического факультета университетов. М.: Мысль. 512 с.].
  14. Hall P., Wilson S.R. 1991. Two guidelines for bootstrap hypothesis testing. Biometrics 47: 757-762.
  15. Harrison S.P., Prentice I.C., Bloomfield K.J., Dong N., Forkel M., Forrest M., Ningthoujam R.K., Pellegrini A., Shen Y., Baudena M., Cardoso A.W., Huss J.H., Joshi J., Oliveras I., Pausas J.G., Simpson K.J. 2021. Understanding and modelling wildfire regimes: an ecological perspective. Environmental Research Letters 16 (12): 125008.
  16. Jiang W., Guiot J., Chu G., Wu H., Yuan B., Hatté C., Guo, Z. 2010. An improved methodology of the modern analogs technique for palaeoclimate reconstruction in arid and semi-arid regions. Boreas, 39: 145-153.
  17. Juggins S. 2019. Rioja: Analysis of Quaternary Science Data, R package version (0.9–21). URL: http://cran.r-project.org/package=rioja (Last accessed 30.09.2024).
  18. Kharuk V.I., Ranson K.J., Petrov I.A., Dvinskaya M.L., Im S.T., Golyukov A.S. 2019. Larch (Larix dahurica Turcz) growth response to climate change in the Siberian Permafrost Zone. Regional Environmental Change, 19(1): 233-243. https://doi.org/10.1007/s10113-018-140.
  19. Kharuk V.I., Dvinskaya M. L., Petrov I.A., Im S.T., Ranson K.J. 2015. Larch forests of Middle Siberia: Long-term trends in fire return intervals. Environmental Research Letters, 16: 2389-2397. https://doi.org/10.1007/s10113-016-0964-9.
  20. Klemm J., Herzschuh U., Pisaric M. F. J., Telford R. J., Heim B., Pestryakova L. A. 2013. A pollen-climate transfer function from the tundra and taiga vegetation in Arctic Siberia and its applicability to a Holocene record. Palaeogeography, Palaeoclimatology, Palaeoecology 386: 702-713.
  21. Kukavskaya E., Soja A., Petkov A., Ponomarev E., Ivanova G., Conard S. 2013. Fire emissions estimates in Siberia: Evaluation of uncertainties in area burned, land cover, and fuel consumption. Canadian Journal of Forest Research 43: 493-506. https://doi.org/10.1139/cjfr-2012-0367.
  22. Kukavskaya E.A., Buryak L.V., Shvetsov E.G., Conard S.G., Kalenskaya O.P. 2016. The impact of increasing fire frequency on forest transformations in southern Siberia. Forest Ecology and Management 382: 222-230. https://doi.org/10.1016/j.foreco.
  23. Kuminova A.V. 1960. Vegetation cover of Altai. SO AS, Novosibirsk, 450 pp. (in Russian). [Куминова А.В. 1960. Растительный покров Алтая. Новосибирск: Изд-во. СО АН. 450 c.].
  24. Kupriyanova L.A. 1965. Palynology of the earwigs. Nauka, Leningrad, 215 pp. [Куприянова Л.А. 1965. Палинология серёжкоцветных. Л.: Наука. 215 с.].
  25. Kupriyanova L.A., Aleshina L.A. 1972. Pollen and spores of plants of the flora of the European part of the USSR. Nauka, Leningrad, Vol. 1, 171 pp. [Куприянова Л.А., Алёшина Л.А. 1972. Пыльца и споры растений флоры европейской части СССР. Л.: Наука. Т. 1. 171 с.]
  26. Kupriyanova L.A., Aleshina L.A. 1978. Pollen of dicotyledonous plants of the flora of the European part of the USSR. Leningrad, Nauka, Vol. 2, 184 pp. [Куприянова Л.А., Алёшина Л.А. 1978. Пыльца двудольных растений флоры европейской части СССР. Л.: Наука. Т. 2. 184 с.].
  27. Li X., Sun A., Yang Y., Zhang D. Wu S. 2024. Modern pollen-vegetation coverage relationships and its application for Holocene vegetation reconstructions in the central Tianshan Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology 635: 111963. https://doi.org/10.1016/j.palaeo.2023.111963.
  28. Liu G., Yin Y., Liu H. Y., Hao Q. 2013. Quantifying regional vegetation cover variability in North China during the Holocene: Implications for climate feedback. PloS One 8 (8): e71681.
  29. Lu H., Wu N., Liu K., Zhu L., Yang X., Yao T., Wang L., Li Q., Liu X., Shen C., Li X., Tong G., Jiang H. 2011. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes. Quaternary Science Reviews 30: 947–966.
  30. Moore P.D., Webb J.A., Collinson, M.E. 1994. Pollen analysis. Oxford, Blackwell Scientific Publications, 217 pp.
  31. Murdoch D., Chow E.D., Celayeta J.M. F. 2018. Ellipse: Functions for Drawing Ellipses and Ellipse-Like Confidence Regions, R package version (0.4.1). URL: https://CRAN.Rproject.org/package=ellipse (Last accessed 09.2024).
  32. Ohlwein C., Wahl E. R. 2012. Review of probabilistic pollen-climate transfer methods. Quaternary Science Reviews 31: 17-29.
  33. Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.G., Simpson G.L., Solymos P., Stevens M.H.H., Szoecs E., Wagner H. 2018. Vegan: Community Ecology Package. R Package version (2.5-2). URL: http://CRAN.Rproject.org/package=vegan (Last accessed 09.2024).
  34. Oksanen J., Laara E., Huttunen P., Merilainen J. 1988. Estimation of ph optima and tolerances of diatoms in lake sediments by the methods of weightered averaging least squeres and maximum likelihook and their use for the prediction of lake acidity. J. Paleolimnol 1: 39-49. https://doi.org/10.1007/BF00202192.
  35. Overpeck J.T., Webb III T., Prentice I.C. 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research 23: 87-108.
  36. Payne R.J., Telford R.J., Blackford J.J., Blundell A., Booth R.K., Charman D.J., Lamentowicz L., Lamentowicz M., Mitchell E.AD, Potts G., Swindles G.T., Warner B.G., Woodland W. 2012. Testing peatland testate amoeba transfer functions: Appropriate methods for clustered training-sets. The Holocene 22(7): 819-825.
  37. Pelànkovà B., Kuneš P., Chytry M., Jankovska V., Ermakov N., Svobodova-Svatavska H. 2008. The relationships of modern pollen spectra to vegetation and climate along a steppe forest tundra transition in southern Siberia, explored by decision trees. The Holocene 18 (8): 1259-1271.
  38. Polikarpov N.P., Chebakova N.M., Nazimova D.I. 1986. Climate and mountain forests of South Siberia. Nauka, Novosibirsk, 225 pp. (in Russian). [Поликарпов Н.П. Чебакова Н.М., Назимова Д.И. 1986. Климат и горные леса Южной Сибири. Новосибирск: Наука. 225 с.].
  39. Rankova E.Y., Gruza G.V. 2011. Climate change in the Russian part of the Altai-Sayan Ecoregion. In Assessment Report. Climate Change and its Impact on Ecosystems, Population and Economy in the Russian Part of the Altai-Sayan Ecoregion, (A.O. Kokorin, ed.) pp. 15-32, WWF Russia Moscow Press, Moscow (in Russian). [Ранькова Э.Я., Груза Г.В. 2011. Изменения климата в российской части Алтае-Саянского экорегиона // Оценочный доклад. Изменения климата и его воздействие на экосистемы, население и хозяйство российской части Алтае-Саянского экорегиона / под ред. А. О. Кокорина. М.: WWF России. С. 15-32].
  40. Seppä H., Birks H. J. B., Odland A., Poska A. and Veski S. 2004. A modern pollen–climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. Journal of Biogeography 31: 251-267.
  41. Smagin V.N., Ilyinskaya S.A., Nazimova D.I., Novoseltseva I.F., Cherednikova Y.S. 1980. Types of forests of the mountains of southern Siberia. Nauka, Novosibirsk, 336 pp. (in Russian). [Смагин В.Н., Ильинская С.А., Назимова Д.И., Новосельцева И.Ф., Чередникова Ю.С. 1980. Типы лесов гор Южной Сибири. Новосибирск: Наука. 336 с.].
  42. Tarasov P., Williams J.W., Andreev A., Nakagawa T., Bezrukkova E., Herzschuh U., Igarashi Y., Muller S., Werner K., Zheng Z. 2007. Satellite- and pollen-based quantitative woody cover reconstructions for northern Asia: Verification and application to Late-Quaternary pollen sat. Earth Planet. Sci. Lett. 264: 282-298.
  43. Tian F., Cao X.Y., Dalimeyer A., Zhao Y., Wang Y.D., Herzschuh U. 2016. Quantitative woody cover reconstructions from eastern continental Asia of the last 22 kyr reveal strong regional peculiarities. Quat. Sci. Rev. 137: 33-44.
  44. ter Braak, C.J.F., Prentice I.C. 1988. A theory of gradient analysis. Adv. Ecol. Res. 18, 271-317.
  45. ter Braak, C.J.F., Juggins, S. 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstruction environmental variables from species assemblages. Hydrologia 269-270: 485–502. https://doi.org/10.1007/BF00028046.
  46. ter Braak C. J. F. 1994. Canonical community ordination. Part 1: basic theory and linear methods. Ecoscience 12: 127–140.
  47. Vallè F., Furlanetto G., Maggi V., Pini R., Ravazzi C. 2019. Concepts and methodology to quantitatively reconstruct climate from pollen data. Geogr. Fis. Dinam. Quat. 42, 225-234. DOI:10/4461/GFDQ/2019.42.12.
  48. Wei H., Zhao Y. 2016. Surface pollen and its relationships with modern vegetation and climate in the Tianshan Mountains, northwestern China. Veget Hist Archaeobot 25:19-27.
  49. Zanon M., Davis B.A.S., Marquer L., Brewer S., Kaplan J. O. 2018. European Forest Cover During the Past 12,000 Years: A Palynological Reconstruction Based on Modern Analogs and Remote Sensing. Front, Plant Sci. 9: 253.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Location of sampling points of modern (sub-recent) spore-pollen spectra in the Altai-Sayan mountain region and adjacent parts of the plains (1 to 6 samples were collected at each point). Icons indicate key biotopes.

Download (118KB)
3. Figure 2. Results of linked cluster analysis of modern (sub-recent) spore-dust spectra of the Altai-Sayan region and adjacent parts of the plains.

Download (182KB)
4. Figure 3. Principal component analysis (PCA) of a sample of 145 modern spore-dust spectra from the Altai-Sayan region and adjacent parts of the plains. Icons and oval color indicate s.p.s. of different biomes in the study area.

Download (153KB)
5. Figure 4. Biplots of RDA-analysis of a sample of 145 modern spore-dust spectra of the Altai-Sayan region and adjacent parts of the plains. A - before the VIF test, B - after the VIF test (see Fig. 3 for symbols).

Download (93KB)

Copyright (c) 2024 Blyakharchuk T.A., Shefer N.V., Lukanina E.A., van Hardenbroek M., Juggins S., Zhang D.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».