Systems approach to the study of microbial methanogenesis in West-Siberian wetlands

Cover Page
  • Authors: Kotsyurbenko O.R.1, Glagolev M.V.2, Sabrekov A.F3, Terentieva I.E.4
  • Affiliations:
    1. Yugra State University, Khanty-Mansyisk, Russia Institute of Water Problems, Russian Academy of Sciences, Moscow, Russia
    2. Yugra State University, Khanty-Mansyisk, Russia Institute of Water Problems, Russian Academy of Sciences, Moscow, Russia Lomonosov Moscow State University, Moscow, Russia Tomsk State University, Tomsk, Russia Institute of Forest Science, Russian Academy of Sciences, Uspenskoe (Moscow region), Russia
    3. Yugra State University, Khanty-Mansyisk, Russia Institute of Water Problems, Russian Academy of Sciences, Moscow, Russia Tomsk State University, Tomsk, Russia Institute of Forest Science, Russian Academy of Sciences, Uspenskoe (Moscow region), Russia
    4. Yugra State University, Khanty-Mansyisk, Russia Tomsk State University, Tomsk, Russia
  • Issue: Vol 11, No 1 (2020)
  • Pages: 53-68
  • Section: Overviews and lectures
  • URL: https://bakhtiniada.ru/EDGCC/article/view/15809
  • DOI: https://doi.org/10.17816/edgcc15809
  • ID: 15809

Cite item

Abstract

This work is a lecture adapted to the format of a journal article on the course "Modern Topics in Biology", delivered by one of the authors in Yugra State University.

The modern stage of the development of science and biology, in particular, is characterized by a systematic approach to the evaluation of various phenomena. In the concept of hierarchical holism, which dominates the systems approach, various biological systems form a hierarchical structure in which an element of one system is an independent system of a lower level. In any individual system, the key points are the interaction of its components and the structure that determines the stability of the system. The microbial systems of wetlands in West Siberia play a crucial ecological role in the context of the problem of greenhouse gases and changes in climate and atmospheric composition. The greenhouse gas methane entering the atmosphere is formed by the methanogenic microbial community, which is a complex biological system containing microbial groups which are closely related to each other by trophic interactions. The result of the work and the efficiency of the methanogenic microbial community is also determined by various physicochemical parameters of the environment. The main microbial agents responsible for the production of CH4 are methanogenic archaea, which are divided into three main trophic groups. The application of a systematic approach to the study of the methane cycle in wetlands of West Siberia allows us to comprehensively evaluate the vertical and horizontal system relationships, identify key elements and conduct a complex analysis of the problem under study.

About the authors

Oleg Rollandovich Kotsyurbenko

Yugra State University, Khanty-Mansyisk, Russia
Institute of Water Problems, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: kotsor@mail.ru
ORCID iD: 0000-0002-4748-3017
http://istina.msu.ru/profile/kocziurbencko/

Doctor of Biology, Professor, Microbiology Department of Biology Faculty

ORCID 0000-0002-4748-3017
SCOPUS Author ID 6602830218
Researcher ID A-7386-2014
eLibrary SPIN 9963-6720

Russian Federation

Mikhail Vladimirovich Glagolev

Yugra State University, Khanty-Mansyisk, Russia
Institute of Water Problems, Russian Academy of Sciences, Moscow, Russia
Lomonosov Moscow State University, Moscow, Russia
Tomsk State University, Tomsk, Russia
Institute of Forest Science, Russian Academy of Sciences, Uspenskoe (Moscow region), Russia

Email: m_glagolev@mail.ru

Alexander F Sabrekov

Yugra State University, Khanty-Mansyisk, Russia
Institute of Water Problems, Russian Academy of Sciences, Moscow, Russia
Tomsk State University, Tomsk, Russia
Institute of Forest Science, Russian Academy of Sciences, Uspenskoe (Moscow region), Russia

Email: misternickel@mail.ru

Irina Evgenievna Terentieva

Yugra State University, Khanty-Mansyisk, Russia
Tomsk State University, Tomsk, Russia

Email: kleptsova@gmail.com

References

  1. Adhya T.K., Rath A.K., Gupta P.K., Rao V.R., Das S.N., Parida K.M., Parashar D.C., Sethunathan N. 1994. Methane emission from flooded rice fields under irrigated conditions // Biol. Fertil. Soils. V. 18. P. 245-248.
  2. Andersen R., Chapman S.J., Artz R.R.E. 2013. Microbial communities in natural and disturbed peatlands: a review // Soil Biol. Biochem. V. 57. P. 979–994.
  3. Anisimov O. A., Kokorev V. A. 2015. Comparative analysis of land, sea and satellite measurements of methane in the lower atmosphere of the Russian part of the Arctic under climate change// Earth exploration from space. № 2. P. 1–14. In Russian
  4. Aselmann I., Crutzen P.J. 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions // J.Atmos.Chem. V. 8 P. 307–358.
  5. Basiliko N., Yavitt J.B, Dees P.M, Merkel S.M 2003. Methane biogeochemistry and methanogen communities in two northern peatland ecosystems, New York State // Geomicrobiol. J. V. 20. P. 563–577.
  6. Battistuzzi F.U., Feijao A., Hedges S.B. 2004. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land // BMC Evol. Biol. V. 4. №:44. doi: 10.1186/1471-2148-4-44.
  7. Borrel G., Adam P.S., Gribaldo S. 2016. Methanogenesis and the Wood–Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association Genome // Biol. Evol. V. 8. N 6. P. 1706–1711. doi: 10.1093/gbe/evw114.
  8. Bräuer S.L., Cadillo-Quiroz H., Ward R.J., Yavitt J.B., Zinder S.H. 2011. Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog // Int. J. Syst. Evol. Microbiol. V. 61. P. 45–52. https://doi.org/10.1099/ijs.0.021782-0.
  9. Bräuer S.L., Cadillo-Quiroz H., Yashiro E., Yavitt J.B., Zinder S.H. 2006. Isolation of a novel acidiphilic methanogen from an acidic peat bog // Nature. V. 442. P. 192–194.
  10. Butterbach-Bahl K., Kock M., Willibald G., Hewett B., Buhagiar S., Papen H., Kiese R. 2004. Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4 in a tropical rain forest ecosystem // Global Biogeochem. Cycles. V. 18. GB3012.
  11. Cao M., Dent J.B., Heal O.W. 1995. Modeling methane emissions from rice paddies // Global Biogeochem. Cycles. V. 9. P. 183–195.
  12. Chapelle F.H., O'Neill K., Bradley P.M., Methe B.A., Ciufo S.A., Knobel L.L., Lovley D.R. 2002. A hydrogen-based subsurface microbial community dominated by methanogens // Nature. V. 415. P.312-315.
  13. Chen B., Ge Q., Fu D., Yu G., Sun X., Wang S., Wang H. 2010. A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling // Biogeosciences. V. 7. Issue 9. P. 2943–2958.
  14. Cicerone R.J., Oremland R.S. 1988. Biogeochemical aspects of atmospheric methane // Global Biogeochem. Cycles V. 2. P. 299–327.
  15. Conrad R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, NO) // Microbiol. Rev. V. 60. P. 609-640.
  16. Conrad R. 2007. Microbial ecology of methanogens and methanotrophs // Advan. Agron. V. 96. P. 1–63. doi: 10.1016/s0065-2113(07)96005-8.
  17. Conrad R., Klose M. 1999. Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots // FEMS Microbiol. Ecol. V. 30. № 30. P. 147–155.
  18. Conrad R., Klose M. 2000. Selective inhibition of reactions involved in methanogenesis and fatty acid production on rice roots // FEMS Microbiol. Ecol. V. 34. № 1. P.27–34.
  19. Drake H.L., Daniel S.L., Küsel K., Matthies C., Kuhner C., Braus-Stromeyer S. 1997. Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities? // BioFactors. V. 6. P. 13–24,
  20. Drake H.L., Gӧβner A.S., Daniel S.L. 2008. Old Acetogens, New Light // Ann. N.Y. Acad. Sci. 1125: 100–128, doi: 10.1196/annals.1419.016.
  21. Ehhalt D.H., Schmidt U. 1978. Sources and sinks of atmospheric methane // Pageoph. V. 116. P.452–464.
  22. Fedorov V.D., Gilmanov T.G. 1980. Ecology. M.: Publishing House of Moscow State University. 464 P. In Russian
  23. Friedrich, M.W. 2005. Methyl‐Coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane‐oxidizing archaea // Methods Enzymol. V.397. P. 428–442. doi: 10.1016/s0076-6879(05)97026-2.
  24. Galand P.E., Fritze H., Conrad R., Yrjälä K 2005. Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems // Appl. Environ. Microbiol. V. 71. P. 2195–2198.
  25. Glagolev M.V. 2010. On the “inverse problem” method for determining the surface density of gas flow from the soil // Environmental Dynamics and Global Climate Change. V. 1. № 1. P. 17-36. In Russian
  26. Glagolev M.V., Fastovets I.A. 2012. Apology of reductionism (reductionism as the worldview of mathematical modeling) // Environmental dynamics and global climate change. V. 3. № 2 (6). P. 1-24. In Russian
  27. Glagolev M.V., Kleptsova I.E. 2009. Methane emission in the forest-tundra: towards the creation of a “standard model” (Aa2) for Western Siberia // Bulletin of Tomsk State Pedagogical University. № 3. P. 77-81. In Russian
  28. Glagolev M.V., Sabrekov A.F., Kleptsova I.E., Filippov I.V., Lapshina E.D., Machida T., Maksyutov S.S. 2012. Methane emission from bogs in the subtaiga of Western Siberia: the development of standard model // Eurasian Soil Sci. V.45. P. 947–957. https://doi.org/10.1134/S106422931210002X.
  29. Glagolev M.V., Shnyrev N.A. 2007. Dynamics of summer-autumn CH4 emission by natural bogs (by the example of the south of the Tomsk Region) // Moscow University Herald. Series 17: Soil Science. № 1. P. 8-14. In Russian
  30. Glagolev M.V., Suvorov G.G. 2007. Methane emission by marsh soils of the Middle Taiga of Western Siberia (on the example of the Khanty-Mansiysk Autonomous Okrug) // Reports on ecological soil science. № 2. Iss. 6. P. 90-162. In Russian
  31. Glazunov A., Rannik Ü., Stepanenko V., Lykosov V., Auvinen M., Vesala T., Mammarella I. 2016. Large-eddy simulation and stochastic modelling of Lagrangian particles for footprint determination in the stable boundary layer // Geosci. Model Dev., V. 9. P. 2925-2949.
  32. Grant R.F. 1998. Simulation of methanogenesis in the mathematical model ecosys // Soil Biol. Biochem. V. 30. P. 883-896.
  33. Haddaway N.R., Burden A., Evans C.D., Healey J.R., Jones D.L., Dalrymple S.E, Pullin A.S. 2014. Evaluating effects of land management on greenhouse gas fluxes and carbon balances in boreotemperate lowland peatland systems // Environ. Evid. V. 3:5. https://doi.org/10.1186/2047-2382-3-5.
  34. Hunger S., Gӧβner A.S., Drake H.L. 2015. Anaerobic trophic interactions of contrasting methane-emitting mire soils: processes versus taxa // FEMS Microbiol. Ecol. V. 91. № 5. doi: 10.1093/femsec/fiv045
  35. IPCC. 2013. Carbon and other biogeochemical cycles. Chapter 6 //: Climate change. The physical science basis. Global methane budget. Cambridge University Press. Cambridge. United Kingdom and New York. NY. USA. P. 505–510.
  36. IPCC. 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 p. https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full.pdf
  37. Jackson B.E, McInerney M.J. 2002. Anaerobic microbial metabolism can proceed close to thermodynamic limits // Nature. V. 415. P. 454–456.
  38. James R.T. 1993. Sensitivity analysis of a simulation model of methane flux from the Florida Everglades // Ecol. Model. V. 68. P. 119-146.
  39. Kallistova A.Yu., Merkel A.Yu., Tarnovetsky I.Yu., Pimenov N.V. 2017. The formation and oxidation of methane by prokaryotes // Microbiology. V. 86. № 6. P.661-683. In Russian
  40. Kalyuzhny S.V., Puzankov A.G., Varfolomeev S.D. 1988. Biogas: problems and solutions // Biotechnology (Results of science and techniques of VINITI AN USSR). M, V. 21. P. 26-32. In Russian
  41. Kotelnikova S., Pedersen K 1997. Evidence for methanogenic Archaea and homoacetogenic Bacteria in deep granitic rock aquifers // FEMS Microbiol. Rev. V. 20. P. 339-349.
  42. Kotsyurbenko O.R. 2005. Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems. Mini-Review // FEMS Microbiol. Ecol. V. 53. P. 3-13.
  43. Kotsyurbenko O.R., Chin K.-J., Glagolev M.V., Stubner S., Simankova M.V., Nozhevnikova A.N., Conrad R. 2004. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog // Environ. Microbiol. V. 6. № 11. P. 1159-1173.
  44. Kotsyurbenko O.R., Glagolev M.V. 2015. Protocols for measuring methanogenesis. // Hydrocarbon and lipid microbiology protocols (Springer Protocols Handbooks) / Terry J. McGenity, Kenneth N. Timmis, Balbina Nogales (Eds.) Springer-Verlag. Berlin Heidelberg. P. 227-243. doi: 10.1007/8623_2015_89.
  45. Kotsyurbenko O.R., Glagolev M.V., Nozhevnikova A.N., Conrad R. 2001. Competition between homoacetogenic bacteria and methanogenic archaea for hydrogen at low temperature //FEMS Microbiol. Ecol. V. 38. P. 153-159.
  46. Kotsyurbenko O.R., Glagolev, M.V., Merkel, A.Y., Sabrekov, A.F., Terentieva, I.E. 2019. Methanogenesis in soils, wetlands and peat // Handbook of hydrocarbon and lipid microbiology Series. Biogenesis of hydrocarbons / A.J.M. Stams and Diana Z. Sousa (Eds.) Springer-Verlag. Berlin Heidelberg. https://doi.org/10.1007/978-3-319-53114-4_9-1.
  47. Kotsyurbenko O.R., Friedrich M.W., Simankova M.V., Nozhevnikova A.N., Golyshin P., Timmis K., Conrad R. 2007. Shift from acetoclastic to H2-dependent methanogenesis in a West Siberian peat bog at low pH // Appl. Environ. Microbiol. V. 73. № 7. P. 2344-2348.
  48. Küsel K., Blӧthe M., Schulz D., Reiche M., Drake H. L. 2008. Microbial reduction of iron and porewater biogeochemistry in acidic peatlands // Biogeosciences. V. 5. P. 1537–1549.
  49. Kutzbach L., Wagner D., Pfeiffer E.M. 2004. Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia // Biogeochemistry. V. 69. P. 341–362. https://doi.org/10.1023/B:BIOG.0000031053.81520.db.
  50. Lansdown J.M, Quay P.D, King S.L 1992. CH4 production via CO2 reduction in a temperate bog: a source of 13C-depleted CH4 // Geochim. Cosmochim. Acta V. 56: P. 3493–3503.
  51. Li T, Li H, Zhang Q, Ma Z, Yu L, Lu Y, Niu Z, Sun W, Liu J (2019) Prediction of CH4 emissions from potential natural wetlands on the Tibetan Plateau during the 21st century. Sci. Total Environ. V. 657 P. 498–508.
  52. Limpens J., Berendse F., Blodau C., Canadell J.G., Freeman C., Holden J., Roulet N., Rydin H., Schaepman-Strub G. 2008. Peatlands and the carbon cycle: from local processes to global implications – a synthesis // Biogeosciences. V. 5. P. 1475–1491.
  53. Lin Y, Liu D, Ding W, Kang H, Freeman C, Yuan J, Xiang J (2015) Substrate sources regulate spatial variation of metabolically active methanogens from two contrasting freshwater wetlands. Appl. Microbiol. Biotechnol. https://doi.org/10.1007/s00253-015-6912-7
  54. Liss O. L., Abramova L. I., Avetov N. A., Berezina N. A., Inisheva L. I., Kurnishkova T. V., Sluka Z. A., Tolpysheva T. Yu., Shvedchikova N.K. 2001. Wetland systems of Western Siberia and their environmental protection significance. Tula: Grif and K. 584 P. In Russian
  55. Markov A., Naimark E. 2014. Evolution. Classic ideas in the light of new discoveries. M.: AST: CORPUS. P. 57. In Russian
  56. Martin W.F., Sousa F.L. 2016. Early Microbial Evolution: The Age of Anaerobes // Cold Spring Harb. Perspect. Biol. 8:a018127. doi: 10.1101/cshperspect.a018127.
  57. Masing V.V. 1974. Some topical questions of classification and terminology in mire science // Mire types of the USSR and principles their classification. T.G. Abramova, М.S. Botch, Е.А. Galkina (Eds.). L.: Nauka. P. 6-12.
  58. Matthews E., Fung I. 1987. Methane emission from natural wetlands: global distribution, area and environmental characteristics of sources // Global Biogeochem. Cycles. V. 1. P. 61–86.
  59. McInerney M., Hoehler T., Gunsalus R.P., Schink B. 2010. Introduction to microbial hydrocarbon production: bioenergetics // Handbook of Hydrocarbon and Lipid Microbiology / Timmis K.N. (Ed.) Springer, Berlin, Heidelberg.
  60. McInerney M.J., Beaty P.S. 1988. Anaerobic community structure from a nonequilibrium thermodynamic perspective // Can. J. Microbiol. V. 34. P. 487-493.
  61. Narrowe A.B., Angle J.C., Daly R.A, Stefanik K.C., Wrighton K.C., Miller C.S. 2017. High-resolution sequencing reveals unexplored archaeal diversity in freshwater wetland soils // Environ. Microbiol. V. 19. P. 2192–2209.
  62. Panikov N.S. 1994. CH4 and CO2 emission from northern wetlands of Russia: Source strength and controlling mechanisms // Proceedings of the International Symposium on Global Cycles of Atmospheric Greenhouse Gases. Sendai: Tohoku University. P. 100–112.
  63. Panikov N.S., Sizova M.V., Zelenev V.V., Machov G.A., Naumov A.V., Gadzhiev I.M. 1995. Methane and carbon dioxide emission from several Vasyugan wetlands: spatial and temporal flux variations // Ecol. Chem. V. 4. № 1. P. 13-23.
  64. Sabrekov A.F., Glagolev M.V. 2008. On the mathematical modeling of the microbial community of the methane cycle // Environmental Dynamics and Global Climate Change. № S1. P. 84-97. In Russian
  65. Sabrekov A.F., Filippov I.V., Terentieva I.E., Glagolev M.V., Il’yasov D.V., Smolentsev B.A., Maksyutov S.S. 2016. The Spatial Variability of Methane Emission from Subtaiga and Forest–Steppe Grass–Moss Fens of Western Siberia // Biology Bulletin. V. 43. №. 2. P. 62–168.
  66. Sabrekov A.F., Runkle B.R.K., Glagolev M.V., Kleptsova I.E., Maksyutov S.S. 2014. Seasonal variability as a source of uncertainty in the West Siberian regional CH4 flux upscaling // Environ. Res. Lett. 9:045008.
  67. Schink B. 1997. Energetics of syntrophic cooperation in methanogenic degradation // Microbiol. Mol. Biol. Rev. V. 61. № 2. P. 262–280.
  68. Seager S., Bains W., Petkowski J.J. 2016. Toward a list of molecules as potential biosignature gases for the search for life on exoplanets and applications to terrestrial biochemistry. Astrobiology. V. 16. № 6. doi: 10.1089/ast.2015.1404.
  69. Simankova M.V., Parshina S.N., Tourova N.P., Kolganova T.V., Zehnder A.J.B., Njzhevnikova A.N. 2001. Methanosarcina lacustris sp. nov., a New psychrotolerant methanogenic archaeon from anoxic lake sediments // System. Appl. Microbiol. V. 24. P. 362–367.
  70. Stoeva M.K., Aris-Brosou S., Chételat J., Hintelmann H., Pelletier P, Poulain A.J. (2014) Microbial community structure in lake and wetland sediments from a high arctic polar desert revealed by targeted transcriptomics // PLoS ONE. V. 9. № 3. e89531.
  71. Taubner R.-S., Pappenreiter P., Zwicker J., Smrzka D., Pruckner C., Kolar P., Bernacchi S., Seifert A.H., Krajete A., Bach W., Peckmann J., Paulik C., Firneis M.G., Schleper C., Rittmann S.K.-M.R. 2018. Biological methane production under putative Enceladus-like conditions // Nature Com. V. 9. P. 748.
  72. Taubner R.-S., Schleper C., Firneis M.G., Simon Rittmann S. K.-M. R. 2015. Assessing the ecophysiology of methanogens in the context of recent astrobiological and planetological studies // Life (Basel). V. 5. N. 4. P. 1652–1686.
  73. Terentieva I.E., Glagolev M.V., Lapshina E.D., Sabrekov A.F., Maksyutov S.S. 2016. Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions // Biogeosciences. V. 13. № 16 P. 4615–4626.
  74. Thauer R.K. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson // Microbiology. V. 144. P. 2377-2406.
  75. Webster K.L., Bhatti J.S., Thompson D.K., Nelson S.A., Shaw C.H., Bona K.A., Hayne S.L., Kurz W.A. 2018. Spatially-integrated estimates of net ecosystem exchange and methane fluxes from Canadian peatlands // Carbon Balance Manag. V. 13. P. 16.
  76. Weiss M.C., Sousa F.L., Mrnjavac N., Neukirchen S., Roettger M., Nelson-Sathi S., Martin W.F. 2016. The physiology and habitat of the last universal common ancestor // Nature microbiology. V. 1. doi: 10.1038/NMICROBIOL.2016.116.
  77. Whalen S.C., Reeburgh W.S. 2000. Methane oxidation, production, and emission at contrasting sites in a boreal bog // Geomicrobiol. J. V. 17. P. 237–251.
  78. Yavitt J.B, Basiliko N., Turetsky M.R., Hay A.G. 2006. Methanogenesis and methanogen diversity in three peatland types of the discontinuous permafrost zone, boreal western continental Canada // Geomicrobiol J. V. 23. P. 641–651.
  79. Yavitt J.B., Yashiro E., Cadillo-Quiroz H., Zinder S.H. 2012. Methanogen diversity and community composition in peatlands of the central to northern Appalachian Mountain region // North Am. Biogeochem. V. 109. P. 117–131.
  80. Zavarzin G.A. 1995a. Anti-market in nature // Priroda. № 3. P. 46- 60. In Russia
  81. Zavarzin G.A. 1995b. Soengen psychrophilic cycle // Ecol. Chem. V.4, P. 3-12.
  82. Zavarzin G.A. 1995b-c. The microbial cycle of methane in cold conditions // Priroda. № 6. P. 3- 14. In Russia
  83. Zavarzin G.A. 2015. Selected Works. M.: MAX Press. 512 P. In Russian
  84. Zavarzin G.A. 2011. Cacosphere. Philosophy and journalism. M.: Ruthenica.. 460 P. In Russian
  85. Zhu X., Zhuang Q., Qin Z., Song L., Glagolev M. 2013. Estimating wetland methane emissions from the northern high latitudes from 1990 to 2009 using artificial neural networks // Global Biogeochem. Cycles. V. 27. № 2. P. 592-604.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Kotsyurbenko O., Glagolev M., Sabrekov A., Terentieva I.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».