人工智能与新型影像学方法在胰腺癌早期诊断中的作用: 文献综述
- 作者: Musaeva F.T.1, Sumenova E.R.1, Islamgulov A.K.2, Kumykova Z.M.1, Elipkhanova T.S.3, Ushaeva A.I.4, Khasieva A.S.3, Ozerova E.S.5, Khusnutdinova D.A.6, Nabiullina A.A.6, Kulinskaya Y.Y.4, Yakupova R.R.2, Mustafin A.A.2
-
隶属关系:
- North Ossetian State Medical Academy
- Bashkir State Medical University
- Maikop State Technological University
- Russian University of Medicine
- The Russian National Research Medical University named after N.I. Pirogov
- Kazan Federal University
- 期: 卷 6, 编号 2 (2025)
- 页面: 317-330
- 栏目: 科学评论
- URL: https://bakhtiniada.ru/DD/article/view/310218
- DOI: https://doi.org/10.17816/DD670193
- EDN: https://elibrary.ru/TFNTZA
- ID: 310218
如何引用文章
全文:
详细
胰腺导管腺癌是最常见的胰腺癌类型,在80–85%的病例中呈现出进展性病程或伴有远处转移灶。尽管对胰腺导管腺癌的研究已取得一定进展,但由于诊断较晚以及晚期治疗手段有限,该病的预后仍然不良。近年来,人工智能图像处理技术已开始应用于胰腺导管腺癌的诊断,并显示出良好前景。本综述汇总了当前文献资料,分析并评估人工智能在影像学及胰腺导管腺癌早期诊断中的作用,同时指出尚待深入研究的问题。文献检索是在PubMed、Google Scholar和eLibrary等数据库中进行的。文献检索是通过以下俄文和英文关键词进行的:“ранняя диагностика рака поджелудочной железы”(胰腺癌早期诊断)、“искусственный интеллект”(人工智能)、“протоковая аденокарцинома поджелудочной железы”(胰腺导管腺癌)、“медицинская визуализация”(医学影像)、“наночастицы”(纳米颗粒)、“pancreatic cancer”(胰腺癌)、“artificial intelligence”(人工智能)、“early diagnosis pancreatic ductal adenocarcinoma”(胰腺癌早期诊断)、“pancreatic cancer imaging”(胰腺癌影像学检查)。在利用人工智能技术实现胰腺导管腺癌早期识别的研究领域,已取得显著进展。当前方法包括影像前的风险分层,以及通过电子病历评估实现分析数据量的扩大。尽管已取得显著进展,人工智能技术在临床实践中的应用仍面临诸多问题。工智能技术与生物标志物的联合应用构成了一个值得进一步研究的前景方向,有望改善多种恶性肿瘤(包括胰腺导管腺癌)的疗诊一体化水平。
作者简介
Ferida T. Musaeva
North Ossetian State Medical Academy
Email: feridamusaeva@yandex.ru
ORCID iD: 0009-0000-1407-7189
俄罗斯联邦, Vladikavkaz
Elizaveta R. Sumenova
North Ossetian State Medical Academy
Email: lsumenova@bk.ru
ORCID iD: 0009-0001-8159-0860
俄罗斯联邦, Vladikavkaz
Almaz Kh. Islamgulov
Bashkir State Medical University
编辑信件的主要联系方式.
Email: aslmaz2000@rambler.ru
ORCID iD: 0000-0003-0567-7515
SPIN 代码: 8701-3486
俄罗斯联邦, Ufa
Zalina M. Kumykova
North Ossetian State Medical Academy
Email: kumykova_2001@mail.ru
ORCID iD: 0009-0007-5243-6796
俄罗斯联邦, Vladikavkaz
Tamila S. Elipkhanova
Maikop State Technological University
Email: eltamila01@mail.ru
ORCID iD: 0009-0006-2901-5443
俄罗斯联邦, Maikop
Alina I. Ushaeva
Russian University of Medicine
Email: ushaeva21@list.ru
ORCID iD: 0009-0007-3888-5683
俄罗斯联邦, Moscow
Amina S. Khasieva
Maikop State Technological University
Email: Khasievaamina999@gmail.com
ORCID iD: 0009-0002-8153-4647
俄罗斯联邦, Maikop
Ekaterina S. Ozerova
The Russian National Research Medical University named after N.I. Pirogov
Email: ozerovaekaterina201@gmail.com
ORCID iD: 0009-0004-8740-1313
俄罗斯联邦, Moscow
Dina A. Khusnutdinova
Kazan Federal University
Email: dinakhusnutdinova02848@gmail.com
ORCID iD: 0009-0002-0562-8414
俄罗斯联邦, Kazan
Alina A. Nabiullina
Kazan Federal University
Email: a.ayratovnaa@gmail.com
ORCID iD: 0009-0004-4365-444X
俄罗斯联邦, Kazan
Yana Yu. Kulinskaya
Russian University of Medicine
Email: Yana.Kulinskaya00@mail.ru
ORCID iD: 0009-0000-7187-0044
俄罗斯联邦, Moscow
Roksana R. Yakupova
Bashkir State Medical University
Email: roksana.yakupova.01@mail.ru
ORCID iD: 0000-0001-5869-607X
俄罗斯联邦, Ufa
Arthur A. Mustafin
Bashkir State Medical University
Email: zacartim@mail.com
ORCID iD: 0009-0006-4747-6972
俄罗斯联邦, Ufa
参考
- Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. The Lancet. 2020;395(10242):2008–2020. doi: 10.1016/S0140-6736(20)30974-0 EDN: WVRHTG
- Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: A Cancer Journal for Clinicians. 2023;73(1):17–48. doi: 10.3322/caac.21763 EDN: SUTYDV
- Nakaoka K, Ohno E, Kawabe N, et al. Current status of the diagnosis of early-stage pancreatic ductal adenocarcinoma. Diagnostics. 2023;13(2):215. doi: 10.3390/diagnostics13020215 EDN: LBLCMY
- Kolbeinsson HM, Chandana S, Wright GP, Chung M. Pancreatic cancer: a review of current treatment and novel therapies. Journal of Investigative Surgery. 2022;36(1):2129884. doi: 10.1080/08941939.2022.2129884 EDN: PSHZLV
- Zhao ZY, Liu W. Pancreatic cancer: a review of risk factors, diagnosis, and treatment. Technology in Cancer Research & Treatment. 2020;19. doi: 10.1177/1533033820962117 EDN: QJRZSL
- Sidorov DV, Egorov VI, Moshurov RI, et al. A case of 10-year survival after modified appleby surgery for locally advanced pancreatic ductal adenocarcinoma. P.A. Herzen Journal of Oncology. 2021;10(5):39–43. doi: 10.17116/onkolog20211005139 EDN: PDPRKV
- US Preventive Services Task Force. Screening for pancreatic cancer. JAMA. 2019;322(5):438–444. doi: 10.1001/jama.2019.10232
- Goggins M, Overbeek KA, Brand R, et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut. 2019;69(1):7–17. doi: 10.1136/gutjnl-2019-319352 EDN: EENUQI
- Chari ST, Maitra A, Matrisian LM, et al. Early detection initiative: a randomized controlled trial of algorithm-based screening in patients with new onset hyperglycemia and diabetes for early detection of pancreatic ductal adenocarcinoma. Contemporary Clinical Trials. 2022;113:106659. doi: 10.1016/j.cct.2021.106659 EDN: XDWSVA
- Kang JD, Clarke SE, Costa AF. Factors associated with missed and misinterpreted cases of pancreatic ductal adenocarcinoma. European Radiology. 2020;31(4):2422–2432. doi: 10.1007/s00330-020-07307-5 EDN: MRFRKF
- Chen PT, Wu T, Wang P, et al. Pancreatic cancer detection on CT scans with deep learning: a nationwide population-based study. Radiology. 2023;306(1):172–182. doi: 10.1148/radiol.220152 EDN: YRPYHK
- Islamgulov AKh, Bogdanova AS, Sufiiarov DI, et al. Modern capabilities of artificial intelligence technologies in cardiovascular imaging. Digital Diagnostics. 2025;6(1):56–67. doi: 10.17816/DD640895 EDN: CFTXVK
- Podină N, Gheorghe EC, Constantin A, et al. Artificial Intelligence in Pancreatic Imaging: A Systematic Review. United European Gastroenterol J. 2025;13(1):55-77. doi: 10.1002/ueg2.12723
- Chernyak V, Fowler KJ, Kamaya A, et al. Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology. 2018;289(3):816–830. doi: 10.1148/radiol.2018181494
- Nagayama Y, Tanoue S, Inoue T, et al. Dual-layer spectral CT improves image quality of multiphasic pancreas CT in patients with pancreatic ductal adenocarcinoma. European Radiology. 2019;30(1):394–403. doi: 10.1007/s00330-019-06337-y EDN: DJBYZU
- Decker JA, Becker J, Härting M, et al. Optimal conspicuity of pancreatic ductal adenocarcinoma in virtual monochromatic imaging reconstructions on a photon-counting detector CT: comparison to conventional MDCT. Abdominal Radiology. 2023;49(1):103–116. doi: 10.1007/s00261-023-04042-5 EDN: XAXRAR
- Dane B, Froemming A, Schwartz FR, et al. Photon counting CT clinical adoption, integration, and workflow. Abdominal Radiology. 2024;49(12):4600–4609. doi: 10.1007/s00261-024-04503-5 EDN: CXSKER
- Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Research Letters. 2021;16(1):173. doi: 10.1186/s11671-021-03628-6 EDN: LMPZGQ
- Alhussan A, Jackson N, Chow N, et al. In Vitro and in vivo synergetic radiotherapy with gold nanoparticles and docetaxel for pancreatic cancer. Pharmaceutics. 2024;16(6):713. doi: 10.3390/pharmaceutics16060713 EDN: SQWTVV
- Gu X, Minko T. Targeted nanoparticle-based diagnostic and treatment options for pancreatic cancer. Cancers. 2024;16(8):1589. doi: 10.3390/cancers16081589 EDN: HPGYGP
- Zhao T, Zhang R, He Q, et al. Partial ligand shielding nanoparticles improve pancreatic ductal adenocarcinoma treatment via a multifunctional paradigm for tumor stroma reprogramming. Acta Biomaterialia. 2022;145:122–134. doi: 10.1016/j.actbio.2022.03.050 EDN: IQTTLE
- Tempero MA, Malafa MP, Al-Hawary M, et al. Pancreatic adenocarcinoma, version 2.2021, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network. 2021;19(4):439–457. doi: 10.6004/jnccn.2021.0017 EDN: IQZRDE
- Lunina NA, Safina DR. Intercellular interactions in the tumor stroma and their role in oncogenesis. Molecular Genetics Microbiology and Virology. 2022;40(4):3–8. doi: 10.17116/molgen2022400413 EDN: VAJWCW
- Kratochwil C, Flechsig P, Lindner T, et al. 68Ga-FAPIPET/CT: tracer uptake in 28 different kindsof cancer. Journal of Nuclear Medicine. 2019;60(6):801–805. doi: 10.2967/jnumed.119.227967
- Deng M, Chen Y, Cai L. Comparison of 68Ga-FAPI and 18F-FDG PET/CT in the imaging of pancreatic cancer with liver metastases. Clinical Nuclear Medicine. 2021;46(7):589–591. doi: 10.1097/rlu.0000000000003561 EDN: ESHJOJ
- Cheng Z, Zou S, Cheng S, et al. Comparison of 18F-FDG, 68Ga-FAPI, and 68Ga-DOTATATE PET/CT in a patient with pancreatic neuroendocrine tumor. Clinical Nuclear Medicine. 2021;46(9):764–765. doi: 10.1097/rlu.0000000000003763 EDN: SNHVLD
- Röhrich M, Naumann P, Giesel FL, et al. Impact of 68Ga-FAPI PET/CT imaging on the therapeutic management of primary and recurrent pancreatic ductal adenocarcinomas. Journal of Nuclear Medicine. 2020;62(6):779–786. doi: 10.2967/jnumed.120.253062 EDN: FFGVMH
- Luo Y, Pan Q, Zhang W, Li F. Intense FAPI uptake in inflammation may mask the tumor activity of pancreatic cancer in 68Ga-FAPI PET/CT. Clinical Nuclear Medicine. 2020;45(4):310–311. doi: 10.1097/rlu.0000000000002914 EDN: JJZLIA
- Zhang H, An J, Wu P, et al. The Application of [68Ga]-Labeled FAPI-04 PET/CT for targeting and early detection of pancreatic carcinoma in patient-derived orthotopic xenograft models. Contrast Media & Molecular Imaging. 2022;2022(1):6596702. doi: 10.1155/2022/6596702 EDN: OXIAOQ
- Pang Y, Zhao L, Shang Q, et al. Positron emission tomography and computed tomography with [68Ga]Ga-fibroblast activation protein inhibitors improves tumor detection and staging in patients with pancreatic cancer. European Journal of Nuclear Medicine and Molecular Imaging. 2021;49(4):1322–1337. doi: 10.1007/s00259-021-05576-w EDN: VQMLNS
- Lang M, Spektor AM, Hielscher T, et al. Static and dynamic 68Ga-FAPI PET/CT for the detection of malignant transformation of intraductal papillary mucinous neoplasia of the pancreas. Journal of Nuclear Medicine. 2022;64(2):244–251. doi: 10.2967/jnumed.122.264361 EDN: TIHZYY
- Quigley NG, Steiger K, Hoberück S, et al. PET/CT imaging of head-and-neck and pancreatic cancer in humans by targeting the “Cancer Integrin” αvβ6 with Ga-68-Trivehexin. European Journal of Nuclear Medicine and Molecular Imaging. 2021;49(4):1136–1147. doi: 10.1007/s00259-021-05559-x EDN: CXNHPW
- Das SS, Ahlawat S, Thakral P, et al. Potential efficacy of 68Ga-Trivehexin PET/CT and immunohistochemical validation of αvβ6 integrin expression in patients with head and neck squamous cell carcinoma and pancreatic ductal adenocarcinoma. Clinical Nuclear Medicine. 2024;49(8):733–740. doi: 10.1097/RLU.0000000000005278 EDN: GRBMEP
- Matsumoto H, Igarashi C, Tachibana T, et al. Preclinical safety evaluation of intraperitoneally administered cu-conjugated anti-EGFR antibody NCAB001 for the early diagnosis of pancreatic cancer using PET. Pharmaceutics. 2022;14(9):1928. doi: 10.3390/pharmaceutics14091928 EDN: BPRKGA
- Gao S, Qin J, Sergeeva O, et al. Synthesis and assessment of ZD2-(68Ga-NOTA) specific to extradomain B fibronectin in tumor microenvironment for PET imaging of pancreatic cancer. Am J Nucl Med Mol Imaging. 2019;9(5):216–229.
- Jugniot N, Bam R, Meuillet EJ, et al. Current status of targeted microbubbles in diagnostic molecular imaging of pancreatic cancer. Bioengineering & Translational Medicine. 2021;6(1):e10183. doi: 10.1002/btm2.10183 EDN: UKSUKJ
- Pysz MA, Machtaler SB, Seeley ES, et al. Vascular endothelial growth factor receptor type 2-targeted contrast-enhanced US of pancreatic cancer neovasculature in a genetically engineered mouse model: potential for earlier detection. Radiology. 2015;274(3):790–799. doi: 10.1148/radiol.14140568
- Bam R, Daryaei I, Abou-Elkacem L, et al. Toward the Clinical Development and Validation of a Thy1-Targeted Ultrasound Contrast Agent for the Early Detection of Pancreatic Ductal Adenocarcinoma. Invest Radiol. 2020;55(11):711-721. doi: 10.1097/RLI.0000000000000697
- Liu YH, Hu CM, Hsu YS, Lee WH. Interplays of glucose metabolism and KRAS mutation in pancreatic ductal adenocarcinoma. Cell Death & Disease. 2022;13(9):1–10. doi: 10.1038/s41419-022-05259-w EDN: IRRGZI
- Dutta P, Castro Pando S, Mascaro M, et al. Early Detection of pancreatic intraepithelial neoplasias (PanINs) in transgenic mouse model by hyperpolarized 13C metabolic magnetic resonance spectroscopy. International Journal of Molecular Sciences. 2020;21(10):3722. doi: 10.3390/ijms21103722 EDN: YBBKHW
- Ardenkjaer-Larsen JH, Fridlund B, Gram A, et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A. 2003;100(18):10158–10163. doi: 10.1073/pnas.1733835100
- Serrao EM, Kettunen MI, Rodrigues TB, et al. MRI with hyperpolarised [1-13C]pyruvate detects advanced pancreatic preneoplasia prior to invasive disease in a mouse model. Gut. 2015;65(3):465–475. doi: 10.1136/gutjnl-2015-310114
- Gordon JW, Chen HY, Nickles T, et al. Hyperpolarized 13C metabolic MRI of patients with pancreatic ductal adenocarcinoma. Journal of Magnetic Resonance Imaging. 2023;60(2):741–749. doi: 10.1002/jmri.29162
- Placido D, Yuan B, Hjaltelin JX, et al. A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nature Medicine. 2023;29(5):1113–1122. doi: 10.1038/s41591-023-02332-5 EDN: XZZVPJ
- Placido D, Yuan B, Hjaltelin JX, et al. Pancreatic cancer risk predicted from disease trajectories using deep learning. bioRxiv. 2023. doi: 10.1101/2021.06.27.449937
- Costache MI, Costache CA, Dumitrescu CI, et al. Which is the best imaging method in pancreatic adenocarcinoma diagnosis and staging — CT, MRI or EUS? Curr Health Sci J. 2017;43(2):132–136. doi: 10.12865/CHSJ.43.02.05
- Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Nava N, Hornegger J, Wells W, Frangi A, editors. Medical image computing and computer-assisted intervention – MICCAI 2015. Proceedings of 18th International Conference. Munich, 2015 Oct 5–9. Cham: Springer, 2015. P. 234–241. doi: 10.1007/978-3-319-24574-4_28
- Ma J, He Y, Li F, et al. Segment anything in medical images. Nature Communications. 2024;15(1):654. doi: 10.1038/s41467-024-44824-z EDN: HKOTWW
- Saakov DV. Improving machine learning algorithm performance with imbalanced data. Construction Economy. 2023;(4):73–77. EDN: PSSFBH
- Mukherjee S, Patra A, Khasawneh H, et al. Radiomics-based machine-learning models can detect pancreatic cancer on prediagnostic computed tomography scans at a substantial lead time before clinical diagnosis. Gastroenterology. 2022;163(5):1435–1446.e3. doi: 10.1053/j.gastro.2022.06.066 EDN: CZMBYK
- Panda A, Korfiatis P, Suman G, et al. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Medical Physics. 2021;48(5):2468–2481. doi: 10.1002/mp.14782 EDN: VCSPAH
- Suman G, Patra A, Korfiatis P, et al. Quality gaps in public pancreas imaging datasets: Implications & challenges for AI applications. Pancreatology. 2021;21(5):1001–1008. doi: 10.1016/j.pan.2021.03.016 EDN: AOWKUZ
- Mukherjee S, Korfiatis P, Patnam NG, et al. Assessing the robustness of a machine-learning model for early detection of pancreatic adenocarcinoma (PDA): evaluating resilience to variations in image acquisition and radiomics workflow using image perturbation methods. Abdominal Radiology. 2024;49(3):964–974. doi: 10.1007/s00261-023-04127-1 EDN: WDNPKU
- Korfiatis P, Suman G, Patnam NG, et al. Automated artificial intelligence model trained on a large data set can detect pancreas cancer on diagnostic computed tomography scans as well as visually occult preinvasive cancer on prediagnostic computed tomography scans. Gastroenterology. 2023;165(6):1533–1546.e4. doi: 10.1053/j.gastro.2023.08.034 EDN: MTJOWL
- Mukherjee S, Korfiatis P, Khasawneh H, et al. Bounding box-based 3D AI model for user-guided volumetric segmentation of pancreatic ductal adenocarcinoma on standard-of-care CTs. Pancreatology. 2023;23(5):522–529. doi: 10.1016/j.pan.2023.05.008 EDN: KZAOWI
- Khasawneh H, Patra A, Rajamohan N, et al. Volumetric pancreas segmentation on computed tomography: accuracy and efficiency of a convolutional neural network versus manual segmentation in 3D Slicer in the context of interreader variability of expert radiologists. Journal of Computer Assisted Tomography. 2022;46(6):841–847. doi: 10.1097/rct.0000000000001374 EDN: FUBRLQ
- Suman G, Patra A, Mukherjee S, et al. Radiomics for detection of pancreas adenocarcinoma on CT scans: impact of biliary stents. Radiology: Imaging Cancer. 2022;4(1):e210081. doi: 10.1148/rycan.210081 EDN: RTESHA
- Singh DP, Sheedy S, Goenka AH, et al. Computerized tomography scan in pre-diagnostic pancreatic ductal adenocarcinoma: stages of progression and potential benefits of early intervention: A retrospective study. Pancreatology. 2020;20(7):1495–1501. doi: 10.1016/j.pan.2020.07.410 EDN: AADXOD
- Cao K, Xia Y, Yao J, et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning. Nature Medicine. 2023;29(12):3033–3043. doi: 10.1038/s41591-023-02640-w EDN: QPNNNU
- Park HJ, Shin K, You MW, et al. Deep learning–based detection of solid and cystic pancreatic neoplasms at contrast-enhanced CT. Radiology. 2023;306(1):140–149. doi: 10.1148/radiol.220171 EDN: PIFJTB
补充文件
