Role of artificial intelligence and novel visualization techniques in the early diagnosis of pancreatic cancer: a review

Cover Page

Cite item

Full Text

Abstract

Pancreatic ductal adenocarcinoma is the most common pancreatic cancer. It is characterized by a progressive course or distant metastases in 80%–85% of cases. Despite advances in understanding of pancreatic ductal adenocarcinoma, the disease is consistently linked to poor prognosis due to late diagnosis and limited treatment options in advanced stages. Recently, image processing using artificial intelligence has been introduced for pancreatic ductal adenocarcinoma diagnosis and demonstrated promising results. This review summarizes current scientific data, evaluates the role of artificial intelligence in imaging and early detection of pancreatic ductal adenocarcinoma, and identifies issues that warrant further investigation. The search for publications was conducted using PubMed, Google Scholar, and eLibrary. The following Russian and English search keywords were used: ранняя диагностика рака поджелудочной железы (early diagnosis of pancreatic cancer), искусственный интеллект (artificial intelligence), протоковая аденокарцинома поджелудочной железы (pancreatic ductal adenocarcinoma), медицинская визуализация (medical visualization), наночастицы (nanoparticles), pancreatic cancer, artificial intelligence, early diagnosis pancreatic ductal adenocarcinoma, and pancreatic cancer imaging. Significant progress in early detection of pancreatic ductal adenocarcinoma using artificial intelligence technologies was observed. Current approaches include pre-imaging risk stratification and increased data volume by analyzing electronic medical records. Despite substantial achievements, the clinical implementation of artificial intelligence technologies remains challenging. The use of artificial intelligence along with biomarkers is a promising direction and may enhance theranostics of various malignancies, including pancreatic ductal adenocarcinoma.

About the authors

Ferida T. Musaeva

North Ossetian State Medical Academy

Email: feridamusaeva@yandex.ru
ORCID iD: 0009-0000-1407-7189
Russian Federation, Vladikavkaz

Elizaveta R. Sumenova

North Ossetian State Medical Academy

Email: lsumenova@bk.ru
ORCID iD: 0009-0001-8159-0860
Russian Federation, Vladikavkaz

Almaz Kh. Islamgulov

Bashkir State Medical University

Author for correspondence.
Email: aslmaz2000@rambler.ru
ORCID iD: 0000-0003-0567-7515
SPIN-code: 8701-3486
Russian Federation, Ufa

Zalina M. Kumykova

North Ossetian State Medical Academy

Email: kumykova_2001@mail.ru
ORCID iD: 0009-0007-5243-6796
Russian Federation, Vladikavkaz

Tamila S. Elipkhanova

Maikop State Technological University

Email: eltamila01@mail.ru
ORCID iD: 0009-0006-2901-5443
Russian Federation, Maikop

Alina I. Ushaeva

Russian University of Medicine

Email: ushaeva21@list.ru
ORCID iD: 0009-0007-3888-5683
Russian Federation, Moscow

Amina S. Khasieva

Maikop State Technological University

Email: Khasievaamina999@gmail.com
ORCID iD: 0009-0002-8153-4647
Russian Federation, Maikop

Ekaterina S. Ozerova

The Russian National Research Medical University named after N.I. Pirogov

Email: ozerovaekaterina201@gmail.com
ORCID iD: 0009-0004-8740-1313
Russian Federation, Moscow

Dina A. Khusnutdinova

Kazan Federal University

Email: dinakhusnutdinova02848@gmail.com
ORCID iD: 0009-0002-0562-8414
Russian Federation, Kazan

Alina A. Nabiullina

Kazan Federal University

Email: a.ayratovnaa@gmail.com
ORCID iD: 0009-0004-4365-444X
Russian Federation, Kazan

Yana Yu. Kulinskaya

Russian University of Medicine

Email: Yana.Kulinskaya00@mail.ru
ORCID iD: 0009-0000-7187-0044
Russian Federation, Moscow

Roksana R. Yakupova

Bashkir State Medical University

Email: roksana.yakupova.01@mail.ru
ORCID iD: 0000-0001-5869-607X
Russian Federation, Ufa

Arthur A. Mustafin

Bashkir State Medical University

Email: zacartim@mail.com
ORCID iD: 0009-0006-4747-6972
Russian Federation, Ufa

References

  1. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. The Lancet. 2020;395(10242):2008–2020. doi: 10.1016/S0140-6736(20)30974-0 EDN: WVRHTG
  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: A Cancer Journal for Clinicians. 2023;73(1):17–48. doi: 10.3322/caac.21763 EDN: SUTYDV
  3. Nakaoka K, Ohno E, Kawabe N, et al. Current status of the diagnosis of early-stage pancreatic ductal adenocarcinoma. Diagnostics. 2023;13(2):215. doi: 10.3390/diagnostics13020215 EDN: LBLCMY
  4. Kolbeinsson HM, Chandana S, Wright GP, Chung M. Pancreatic cancer: a review of current treatment and novel therapies. Journal of Investigative Surgery. 2022;36(1):2129884. doi: 10.1080/08941939.2022.2129884 EDN: PSHZLV
  5. Zhao ZY, Liu W. Pancreatic cancer: a review of risk factors, diagnosis, and treatment. Technology in Cancer Research & Treatment. 2020;19. doi: 10.1177/1533033820962117 EDN: QJRZSL
  6. Sidorov DV, Egorov VI, Moshurov RI, et al. A case of 10-year survival after modified appleby surgery for locally advanced pancreatic ductal adenocarcinoma. P.A. Herzen Journal of Oncology. 2021;10(5):39–43. doi: 10.17116/onkolog20211005139 EDN: PDPRKV
  7. US Preventive Services Task Force. Screening for pancreatic cancer. JAMA. 2019;322(5):438–444. doi: 10.1001/jama.2019.10232
  8. Goggins M, Overbeek KA, Brand R, et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut. 2019;69(1):7–17. doi: 10.1136/gutjnl-2019-319352 EDN: EENUQI
  9. Chari ST, Maitra A, Matrisian LM, et al. Early detection initiative: a randomized controlled trial of algorithm-based screening in patients with new onset hyperglycemia and diabetes for early detection of pancreatic ductal adenocarcinoma. Contemporary Clinical Trials. 2022;113:106659. doi: 10.1016/j.cct.2021.106659 EDN: XDWSVA
  10. Kang JD, Clarke SE, Costa AF. Factors associated with missed and misinterpreted cases of pancreatic ductal adenocarcinoma. European Radiology. 2020;31(4):2422–2432. doi: 10.1007/s00330-020-07307-5 EDN: MRFRKF
  11. Chen PT, Wu T, Wang P, et al. Pancreatic cancer detection on CT scans with deep learning: a nationwide population-based study. Radiology. 2023;306(1):172–182. doi: 10.1148/radiol.220152 EDN: YRPYHK
  12. Islamgulov AKh, Bogdanova AS, Sufiiarov DI, et al. Modern capabilities of artificial intelligence technologies in cardiovascular imaging. Digital Diagnostics. 2025;6(1):56–67. doi: 10.17816/DD640895 EDN: CFTXVK
  13. Podină N, Gheorghe EC, Constantin A, et al. Artificial Intelligence in Pancreatic Imaging: A Systematic Review. United European Gastroenterol J. 2025;13(1):55-77. doi: 10.1002/ueg2.12723
  14. Chernyak V, Fowler KJ, Kamaya A, et al. Liver imaging reporting and data system (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology. 2018;289(3):816–830. doi: 10.1148/radiol.2018181494
  15. Nagayama Y, Tanoue S, Inoue T, et al. Dual-layer spectral CT improves image quality of multiphasic pancreas CT in patients with pancreatic ductal adenocarcinoma. European Radiology. 2019;30(1):394–403. doi: 10.1007/s00330-019-06337-y EDN: DJBYZU
  16. Decker JA, Becker J, Härting M, et al. Optimal conspicuity of pancreatic ductal adenocarcinoma in virtual monochromatic imaging reconstructions on a photon-counting detector CT: comparison to conventional MDCT. Abdominal Radiology. 2023;49(1):103–116. doi: 10.1007/s00261-023-04042-5 EDN: XAXRAR
  17. Dane B, Froemming A, Schwartz FR, et al. Photon counting CT clinical adoption, integration, and workflow. Abdominal Radiology. 2024;49(12):4600–4609. doi: 10.1007/s00261-024-04503-5 EDN: CXSKER
  18. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Research Letters. 2021;16(1):173. doi: 10.1186/s11671-021-03628-6 EDN: LMPZGQ
  19. Alhussan A, Jackson N, Chow N, et al. In Vitro and in vivo synergetic radiotherapy with gold nanoparticles and docetaxel for pancreatic cancer. Pharmaceutics. 2024;16(6):713. doi: 10.3390/pharmaceutics16060713 EDN: SQWTVV
  20. Gu X, Minko T. Targeted nanoparticle-based diagnostic and treatment options for pancreatic cancer. Cancers. 2024;16(8):1589. doi: 10.3390/cancers16081589 EDN: HPGYGP
  21. Zhao T, Zhang R, He Q, et al. Partial ligand shielding nanoparticles improve pancreatic ductal adenocarcinoma treatment via a multifunctional paradigm for tumor stroma reprogramming. Acta Biomaterialia. 2022;145:122–134. doi: 10.1016/j.actbio.2022.03.050 EDN: IQTTLE
  22. Tempero MA, Malafa MP, Al-Hawary M, et al. Pancreatic adenocarcinoma, version 2.2021, NCCN clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network. 2021;19(4):439–457. doi: 10.6004/jnccn.2021.0017 EDN: IQZRDE
  23. Lunina NA, Safina DR. Intercellular interactions in the tumor stroma and their role in oncogenesis. Molecular Genetics Microbiology and Virology. 2022;40(4):3–8. doi: 10.17116/molgen2022400413 EDN: VAJWCW
  24. Kratochwil C, Flechsig P, Lindner T, et al. 68Ga-FAPIPET/CT: tracer uptake in 28 different kindsof cancer. Journal of Nuclear Medicine. 2019;60(6):801–805. doi: 10.2967/jnumed.119.227967
  25. Deng M, Chen Y, Cai L. Comparison of 68Ga-FAPI and 18F-FDG PET/CT in the imaging of pancreatic cancer with liver metastases. Clinical Nuclear Medicine. 2021;46(7):589–591. doi: 10.1097/rlu.0000000000003561 EDN: ESHJOJ
  26. Cheng Z, Zou S, Cheng S, et al. Comparison of 18F-FDG, 68Ga-FAPI, and 68Ga-DOTATATE PET/CT in a patient with pancreatic neuroendocrine tumor. Clinical Nuclear Medicine. 2021;46(9):764–765. doi: 10.1097/rlu.0000000000003763 EDN: SNHVLD
  27. Röhrich M, Naumann P, Giesel FL, et al. Impact of 68Ga-FAPI PET/CT imaging on the therapeutic management of primary and recurrent pancreatic ductal adenocarcinomas. Journal of Nuclear Medicine. 2020;62(6):779–786. doi: 10.2967/jnumed.120.253062 EDN: FFGVMH
  28. Luo Y, Pan Q, Zhang W, Li F. Intense FAPI uptake in inflammation may mask the tumor activity of pancreatic cancer in 68Ga-FAPI PET/CT. Clinical Nuclear Medicine. 2020;45(4):310–311. doi: 10.1097/rlu.0000000000002914 EDN: JJZLIA
  29. Zhang H, An J, Wu P, et al. The Application of [68Ga]-Labeled FAPI-04 PET/CT for targeting and early detection of pancreatic carcinoma in patient-derived orthotopic xenograft models. Contrast Media & Molecular Imaging. 2022;2022(1):6596702. doi: 10.1155/2022/6596702 EDN: OXIAOQ
  30. Pang Y, Zhao L, Shang Q, et al. Positron emission tomography and computed tomography with [68Ga]Ga-fibroblast activation protein inhibitors improves tumor detection and staging in patients with pancreatic cancer. European Journal of Nuclear Medicine and Molecular Imaging. 2021;49(4):1322–1337. doi: 10.1007/s00259-021-05576-w EDN: VQMLNS
  31. Lang M, Spektor AM, Hielscher T, et al. Static and dynamic 68Ga-FAPI PET/CT for the detection of malignant transformation of intraductal papillary mucinous neoplasia of the pancreas. Journal of Nuclear Medicine. 2022;64(2):244–251. doi: 10.2967/jnumed.122.264361 EDN: TIHZYY
  32. Quigley NG, Steiger K, Hoberück S, et al. PET/CT imaging of head-and-neck and pancreatic cancer in humans by targeting the “Cancer Integrin” αvβ6 with Ga-68-Trivehexin. European Journal of Nuclear Medicine and Molecular Imaging. 2021;49(4):1136–1147. doi: 10.1007/s00259-021-05559-x EDN: CXNHPW
  33. Das SS, Ahlawat S, Thakral P, et al. Potential efficacy of 68Ga-Trivehexin PET/CT and immunohistochemical validation of αvβ6 integrin expression in patients with head and neck squamous cell carcinoma and pancreatic ductal adenocarcinoma. Clinical Nuclear Medicine. 2024;49(8):733–740. doi: 10.1097/RLU.0000000000005278 EDN: GRBMEP
  34. Matsumoto H, Igarashi C, Tachibana T, et al. Preclinical safety evaluation of intraperitoneally administered cu-conjugated anti-EGFR antibody NCAB001 for the early diagnosis of pancreatic cancer using PET. Pharmaceutics. 2022;14(9):1928. doi: 10.3390/pharmaceutics14091928 EDN: BPRKGA
  35. Gao S, Qin J, Sergeeva O, et al. Synthesis and assessment of ZD2-(68Ga-NOTA) specific to extradomain B fibronectin in tumor microenvironment for PET imaging of pancreatic cancer. Am J Nucl Med Mol Imaging. 2019;9(5):216–229.
  36. Jugniot N, Bam R, Meuillet EJ, et al. Current status of targeted microbubbles in diagnostic molecular imaging of pancreatic cancer. Bioengineering & Translational Medicine. 2021;6(1):e10183. doi: 10.1002/btm2.10183 EDN: UKSUKJ
  37. Pysz MA, Machtaler SB, Seeley ES, et al. Vascular endothelial growth factor receptor type 2-targeted contrast-enhanced US of pancreatic cancer neovasculature in a genetically engineered mouse model: potential for earlier detection. Radiology. 2015;274(3):790–799. doi: 10.1148/radiol.14140568
  38. Bam R, Daryaei I, Abou-Elkacem L, et al. Toward the Clinical Development and Validation of a Thy1-Targeted Ultrasound Contrast Agent for the Early Detection of Pancreatic Ductal Adenocarcinoma. Invest Radiol. 2020;55(11):711-721. doi: 10.1097/RLI.0000000000000697
  39. Liu YH, Hu CM, Hsu YS, Lee WH. Interplays of glucose metabolism and KRAS mutation in pancreatic ductal adenocarcinoma. Cell Death & Disease. 2022;13(9):1–10. doi: 10.1038/s41419-022-05259-w EDN: IRRGZI
  40. Dutta P, Castro Pando S, Mascaro M, et al. Early Detection of pancreatic intraepithelial neoplasias (PanINs) in transgenic mouse model by hyperpolarized 13C metabolic magnetic resonance spectroscopy. International Journal of Molecular Sciences. 2020;21(10):3722. doi: 10.3390/ijms21103722 EDN: YBBKHW
  41. Ardenkjaer-Larsen JH, Fridlund B, Gram A, et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A. 2003;100(18):10158–10163. doi: 10.1073/pnas.1733835100
  42. Serrao EM, Kettunen MI, Rodrigues TB, et al. MRI with hyperpolarised [1-13C]pyruvate detects advanced pancreatic preneoplasia prior to invasive disease in a mouse model. Gut. 2015;65(3):465–475. doi: 10.1136/gutjnl-2015-310114
  43. Gordon JW, Chen HY, Nickles T, et al. Hyperpolarized 13C metabolic MRI of patients with pancreatic ductal adenocarcinoma. Journal of Magnetic Resonance Imaging. 2023;60(2):741–749. doi: 10.1002/jmri.29162
  44. Placido D, Yuan B, Hjaltelin JX, et al. A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nature Medicine. 2023;29(5):1113–1122. doi: 10.1038/s41591-023-02332-5 EDN: XZZVPJ
  45. Placido D, Yuan B, Hjaltelin JX, et al. Pancreatic cancer risk predicted from disease trajectories using deep learning. bioRxiv. 2023. doi: 10.1101/2021.06.27.449937
  46. Costache MI, Costache CA, Dumitrescu CI, et al. Which is the best imaging method in pancreatic adenocarcinoma diagnosis and staging — CT, MRI or EUS? Curr Health Sci J. 2017;43(2):132–136. doi: 10.12865/CHSJ.43.02.05
  47. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Nava N, Hornegger J, Wells W, Frangi A, editors. Medical image computing and computer-assisted intervention – MICCAI 2015. Proceedings of 18th International Conference. Munich, 2015 Oct 5–9. Cham: Springer, 2015. P. 234–241. doi: 10.1007/978-3-319-24574-4_28
  48. Ma J, He Y, Li F, et al. Segment anything in medical images. Nature Communications. 2024;15(1):654. doi: 10.1038/s41467-024-44824-z EDN: HKOTWW
  49. Saakov DV. Improving machine learning algorithm performance with imbalanced data. Construction Economy. 2023;(4):73–77. EDN: PSSFBH
  50. Mukherjee S, Patra A, Khasawneh H, et al. Radiomics-based machine-learning models can detect pancreatic cancer on prediagnostic computed tomography scans at a substantial lead time before clinical diagnosis. Gastroenterology. 2022;163(5):1435–1446.e3. doi: 10.1053/j.gastro.2022.06.066 EDN: CZMBYK
  51. Panda A, Korfiatis P, Suman G, et al. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Medical Physics. 2021;48(5):2468–2481. doi: 10.1002/mp.14782 EDN: VCSPAH
  52. Suman G, Patra A, Korfiatis P, et al. Quality gaps in public pancreas imaging datasets: Implications & challenges for AI applications. Pancreatology. 2021;21(5):1001–1008. doi: 10.1016/j.pan.2021.03.016 EDN: AOWKUZ
  53. Mukherjee S, Korfiatis P, Patnam NG, et al. Assessing the robustness of a machine-learning model for early detection of pancreatic adenocarcinoma (PDA): evaluating resilience to variations in image acquisition and radiomics workflow using image perturbation methods. Abdominal Radiology. 2024;49(3):964–974. doi: 10.1007/s00261-023-04127-1 EDN: WDNPKU
  54. Korfiatis P, Suman G, Patnam NG, et al. Automated artificial intelligence model trained on a large data set can detect pancreas cancer on diagnostic computed tomography scans as well as visually occult preinvasive cancer on prediagnostic computed tomography scans. Gastroenterology. 2023;165(6):1533–1546.e4. doi: 10.1053/j.gastro.2023.08.034 EDN: MTJOWL
  55. Mukherjee S, Korfiatis P, Khasawneh H, et al. Bounding box-based 3D AI model for user-guided volumetric segmentation of pancreatic ductal adenocarcinoma on standard-of-care CTs. Pancreatology. 2023;23(5):522–529. doi: 10.1016/j.pan.2023.05.008 EDN: KZAOWI
  56. Khasawneh H, Patra A, Rajamohan N, et al. Volumetric pancreas segmentation on computed tomography: accuracy and efficiency of a convolutional neural network versus manual segmentation in 3D Slicer in the context of interreader variability of expert radiologists. Journal of Computer Assisted Tomography. 2022;46(6):841–847. doi: 10.1097/rct.0000000000001374 EDN: FUBRLQ
  57. Suman G, Patra A, Mukherjee S, et al. Radiomics for detection of pancreas adenocarcinoma on CT scans: impact of biliary stents. Radiology: Imaging Cancer. 2022;4(1):e210081. doi: 10.1148/rycan.210081 EDN: RTESHA
  58. Singh DP, Sheedy S, Goenka AH, et al. Computerized tomography scan in pre-diagnostic pancreatic ductal adenocarcinoma: stages of progression and potential benefits of early intervention: A retrospective study. Pancreatology. 2020;20(7):1495–1501. doi: 10.1016/j.pan.2020.07.410 EDN: AADXOD
  59. Cao K, Xia Y, Yao J, et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning. Nature Medicine. 2023;29(12):3033–3043. doi: 10.1038/s41591-023-02640-w EDN: QPNNNU
  60. Park HJ, Shin K, You MW, et al. Deep learning–based detection of solid and cystic pancreatic neoplasms at contrast-enhanced CT. Radiology. 2023;306(1):140–149. doi: 10.1148/radiol.220171 EDN: PIFJTB

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».