利用机器学习方法诊断乳腺癌

封面图片

如何引用文章

全文:

详细

最近几年,机器学习方法在诊断领域,特别是对乳腺癌的检测受到越来越多的关注。

文章从三个方面分析了当前致力于在乳腺癌诊断中使用机器学习方法的研究:用于解决现代乳腺癌诊断中出现的辅助任务,作为初步诊断决策的患者病情智能评估,以及确定乳腺癌的风险因素。文章从三个方面分析了机器学习方法在乳腺癌诊断中的应用现状:解决现代乳腺癌诊断中出现的辅助课题,智能评估患者病情初步诊断决策,以及确定乳腺癌的风险因素。

分析表明,利用机器学习方法诊断乳腺癌为提高诊断的准确性和效率提供巨大的可能性,并且还可以完成其他额外任务。

文献分析结果,确定了用作机器学习方法中输入数据的特征。今后,收集到的信息将用于构建一个利用机器学习方法诊断乳腺癌的特征系统。

作者简介

Kirill S. Dyomin

Volgograd State University

编辑信件的主要联系方式.
Email: diominkirill@yandex.ru
ORCID iD: 0009-0002-4571-3437
俄罗斯联邦, Volgograd

Ilya V. Germashev

Volgograd State University

Email: germashev@volsu.ru
ORCID iD: 0000-0001-5507-8508
SPIN 代码: 2489-2628

Dr. Sci. (Engineering)

俄罗斯联邦, Volgograd

参考

  1. Kaprin AD, Starinsky VV, Shakhzadova AO, editors. Sostoyanie onkologicheskoj pomoshchi naseleniyu Rossii v 2022 godu. Moscow: P.A. Herzen Institute of Medical Sciences − branch of the Federal State Budgetary Institution “NMIC of Radiology” of the Ministry of Health of the Russian Federation; 2023. (In Russ.)
  2. Zou S, Lin Y, Yu X, et al. Genetic and lifestyle factors for breast cancer risk assessment in Southeast China. Cancer Medicine. 2023;12(14):15504–15514. doi: 10.1002/cam4.6198
  3. Raza SK, Sarwar SS, Syed SM, Khan NA. Classification and Segmentation of Breast Tumor Using Mask R- CNN on Mammograms. Research Square. 2021. doi: 10.21203/rs.3.rs-523546/v1
  4. Khan AA, Arora AS. Thermography as an Economical Alternative Modality to Mammography for Early Detection of Breast Cancer. Journal of Healthcare Engineering. 2021:5543101. doi: 10.1155/2021/5543101
  5. Ko C, Toh C, Brody JP. Genetic risk scores for breast cancer based on machine learning analysis of chromosomal-scale length variation. Clinical Cancer Research. 2021;27 Suppl. 5:PR-09. doi: 10.1158/1557-3265.ADI21-PR-09
  6. Yagin B, Yagin FH, Colak C, et al. Cancer Metastasis Prediction and Genomic Biomarker Identification through Machine Learning and eXplainable Artificial Intelligence in Breast Cancer Research. Diagnostics (Basel). 2023;13(21):3314. doi: 10.3390/diagnostics13213314
  7. O’Leary TJ, Mikel UV, Becker RL. Computer-assisted image interpretation: use of a neural network to differentiate tubular carcinoma from sclerosing adenosis. Modern Pathology. 1992;5(4):402–405.
  8. Tsochatzidis L, Costaridou L, Pratikakis I. Deep Learning for Breast Cancer Diagnosis from Mammograms – A Comparative Study. Journal of Imaging. 2019;5(3):37. doi: 10.3390/jimaging5030037
  9. Hamad YA, Simonov K, Naeem MB. Breast Cancer Detection and Classification Using Artificial Neural Networks. In: 1st Annual International Conference on Information and Sciences (AiCIS); Nov 20–21, 2018; Fallujah. P. 51–57. doi: 10.1109/aicis.2018.00022
  10. Ruchai AN, Kober VI, Dorofeev KA, et al. Classification of breast pathologies using a deep convolutional neural network and transfer learning. Information processes. 2020;20(4):357–365.
  11. Sasov DA, Zubkov AV, Orlova YuA, Tupitsyna AV. Classification of breast cancer using convolutional neural networks. Inženernyj vestnik Dona. 2023;6:730–741. (In Russ.)
  12. Computational Intelligence and Neuroscience. Retracted: Value of Artificial Neural Network Ultrasound in Improving Breast Cancer Diagnosis. Computational Intelligence and Neuroscience. 2023:9872174. doi: 10.1155/2023/9872174
  13. Zhang L, Jia Z, Leng X, Ma F. Artificial Intelligence Algorithm-Based Ultrasound Image Segmentation Technology in the Diagnosis of Breast Cancer Axillary Lymph Node Metastasis. Journal of Healthcare Engineering. 2021:8830260. doi: 10.1155/2021/8830260
  14. Zheng X, Yao Z, Huang Y, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nature Communications. 2020;11(1):1236. doi: 10.1038/s41467-020-15027-z
  15. Mustafin CK. Sovremennaya diagnostika zabolevanij molochnyh zhelez. Glavnyj vrač Ûga Rossii. 2014;(2):20–23. (In Russ.)
  16. Jochelson MS, Dershaw DD, Sung JS, et al. Bilateral contrast-enhanced dual-energy digital mammography: feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiology. 2013;266(3):743–751. doi: 10.1148/radiol.12121084
  17. Witowski J, Heacock L, Reig B, et al. Improving breast cancer diagnostics with deep learning for MRI. Science Translational Medicine. 2022;14(664):eabo4802. doi: 10.1126/scitranslmed.abo4802
  18. Yurttakal AH, Erbay H, İkizceli T, Karacavus S. Detection of breast cancer via deep convolution neural networks using MRI images. Multimedia Tools and Applications. 2020;79:15555–15573. doi: 10.1007/s11042-019-7479-6
  19. Gourav Modanwal, Adithya Vellal, Maciej A. Mazurowski, Normalization of breast MRIs using cycle-consistent generative adversarial networks // Computer Methods and Programs in Biomedicine, Vol. 208, 2021. doi: 10.1016/j.cmpb.2021.106225
  20. Ceny na MRT. In: Like Doctor [Internet] [cited 2024 Jan 9]. Available from: https://like.doctor/ceny/diagnostika/mrt (In Russ).
  21. Diagnosticheskij mikrovolnovyj radiotermometr RTM-01-RES. In: Mikrovolnovaya radiotermometriya v medicine [Internet] [cited 2024 Jan 9]. Available from: http://www.radiometry.ru/radiometry/mammology/ (In Russ).
  22. Polyakov MV, Popov IE, Losev AG, Khoperskov AV. Application of computer simulation results and machine learning in analysis of microwave radiothermometry data. Mathematical Physics and Computer Simulation. 2021;24(2):27–37. doi: 10.15688/mpcm.jvolsu.2021.2.3
  23. Germashev IV, Dubovskaya VI, Losev AG, Popov IE. Factor analysis of the effect of signs on the accuracy of breast cancer diagnosis according to microwave radiothermometry. Caspian Journal: Management and High Technologies. 2022;(1):139–148.
  24. Losev AG, Medvedev DA. The use of neural networks in the diagnosis of breast cancer according to microwave radiothermometry. Modern Science and Innovation. 2019;(4):22–28.
  25. Shusharin AG, Morozov VV, Polovinka MP. Medical thermal imaging – modern possibilities of the method. Modern problems of science and education. 2011:(4).
  26. Titskaya AA, Chernov VI, Sinilkin IG, et al. Standartizirovannye metodiki radionuklidnoj diagnostiki. Mammoscintigrafiya. Moscow: NTC Amplitude; 2014. (In Russ.)
  27. Li J, Galazis C, Popov L, et al. Dynamic Weight Agnostic Neural Networks and Medical Microwave Radiometry (MWR) for Breast Cancer Diagnostics. Diagnostics (Basel). 2022;12(9):2037. doi: 10.3390/diagnostics12092037
  28. Glazunov VA. Testing the algorithm of tumor localization in breast cancer based on the results of modeling temperature fields. // XXV Regional Conference of Young Researchers of the Volgograd region : Theses of reports, Volgograd, November 20 – 13, 2020 / Editorial board: A.E. Kalinina (ed.) [et al.]. Volgograd: Volgograd State University, 2021. P:343–347. (In Russ.) EDN: DJQDLK
  29. Zamechnik TV, Losev AG, Levshinsky VV. Results of optimization of diagnostic signs of breast cancer detected by microwave radiothermometry. Medical News of North Caucasus. 2019;14(1.1):48–52. doi: 10.14300/mnnc.2019.14047
  30. Kakileti ST, Madhu HJ, Manjunath G, et al, Personalized risk prediction for breast cancer pre-screening using artificial intelligence and thermal radiomics. Artificial Intelligence in Medicine. 2020;105:101854. doi: 10.1016/j.artmed.2020.101854
  31. Mambou SJ, Maresova P, Krejcar O, et al. Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model. Sensors (Basel). 2018;18(9):2799. doi: 10.3390/s18092799
  32. Makarova MV, Unitsina AV. Thermal imaging of mammary glands in the assessment of volumetric formations. Vestnik of Northern (Arctic) Federal University. Series “Humanitarian and Social Sciences”. 2013;(4):44–50.
  33. Hussein NAK, Al-Sarray B. Deep Learning and Machine Learning via a Genetic Algorithm to Classify Breast Cancer DNA Data. Iraqi Journal of Science. 2022;63(7):3153–3168. doi: 10.24996/ijs.2022.63.7.36
  34. Magna AAR, Allende-Cid H, Taramasco C, et al. Application of Machine Learning and Word Embeddings in the Classification of Cancer Diagnosis Using Patient Anamnesis. IEEE Access. 2020;8:106198–106213. doi: 10.1109/ACCESS.2020.3000075
  35. Mortazavi SAR, Tahmasebi S, Par-Saei H, Taleie A. Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens. Journal of Biomedical Physics and Engineering. 2022;12(6):637–644. doi: 10.31661/jbpe.v0i0.2105-1341
  36. Mortazavi SAR. The Association of Screen Time and Female Breast Cancer – A Retrospective Case-Control Study [dissertation]. Shiraz: Shiraz University of Medical Sciences; 2021.
  37. Afrash MR, Bayani A, Shanbehzadeh M, et al. Developing the breast cancer risk prediction system using hybrid machine learning algorithms. Journal of Education and Health Promotion. 2022;11(1):272. doi: 10.4103/jehp.jehp_42_22

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Example of tumor localization [3].

下载 (118KB)
3. Fig. 2. Visualization of two patient examples [14]: a - the low-sound region inside the tumor is valuable for predicting the status of perivascular lymph nodes; b - tumor border.

下载 (215KB)
4. Fig. 3. Example of a thermogram of a healthy patient.

下载 (283KB)
5. Fig. 4. Location of points for obtaining temperatures.

下载 (69KB)
6. Fig. 5. Frequency of use of machine learning models, %.

下载 (114KB)

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).