在胶片模式下对心脏磁共振图像进行放射组学分析以确定左心室心肌梗死后区域的可能性
- 作者: Maksimova A.S.1, Samatov D.S.2, Merzlikin B.S.2, Shelkovnikova T.A.1, Listratov A.I.3, Zavadovsky K.V.1
-
隶属关系:
- Tomsk National Research Medical Center of the Russian Academy of Sciences
- National Research Tomsk Polytechnic University
- Siberian State Medical University
- 期: 卷 5, 编号 4 (2024)
- 页面: 682-694
- 栏目: 原创性科研成果
- URL: https://bakhtiniada.ru/DD/article/view/309829
- DOI: https://doi.org/10.17816/DD630602
- ID: 309829
如何引用文章
详细
论证。这项工作的基础是对放射组学特征的研究,通过使用胶片模式下的非对比心脏磁共振成像(MRI)图像,可以区分梗死组织区域和远离梗死区域的组织。尺寸和定位,以及完整组织和梗死区域的明确区分对于临床诊断和精准医疗非常重要。
目的。根据胶片模式下的非对比心脏MRI图像数据,评估放射组学分析在检测缺血性心肌病 (ICM) 患者左心室心肌梗死后区域方面的能力和信息量。
材料和方法。我们分析了33名接受ICM手术治疗的患者的心脏磁共振成像造影结果。在胶片模式下,对66幅心脏 MRI 图像进行了纹理分析,并确定了每幅图像的 105 个纹理特征。心脏磁共振成像是在Vantage Titan(Toshiba)1.5 Tesla磁共振成像仪上按照标准方法进行的。纹理分析使用的是3D slicer-version 5.2.2, Pyradiomics。
结果。在研究中,我们构建了特征共线性图,识别了重要性为零的特征,并使用梯度提升算法确定了特征的重要性,并根据特征总数估计了特征的累积重要性。使用识别低重要性特征的方法,我们识别出不影响指定总体水平的最低重要性的参数。使用单值特征检测方法,我们没有发现任何相关特征。根据分析结果,生成用于Lasso逻辑回归的ROC曲线(Se=57.14%, Sp=71.43%,AUC=0.76)。该研究的主要成果是在胶片模式的心脏磁共振成像基础上,确定心肌梗塞后心肌梗死和左心室壁完整区域的放射组学特征。
结论。该研究表明,在胶片模式下非对比心脏磁共振图像进行放射组学分析是一种很有前途的方法,可用于识别心肌梗死和完整壁的相应区域。这种方法可用于识别 ICM 患者梗死后心脏硬化的区域,而无需使用造影剂。
作者简介
Aleksandra S. Maksimova
Tomsk National Research Medical Center of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: asmaximova@yandex.ru
ORCID iD: 0000-0002-4871-3283
SPIN 代码: 2879-9550
MD, Cand. Sci. (Medicine)
俄罗斯联邦, TomskDenis S. Samatov
National Research Tomsk Polytechnic University
Email: denissamatov470@gmail.com
ORCID iD: 0009-0000-1821-323X
俄罗斯联邦, Tomsk
Boris S. Merzlikin
National Research Tomsk Polytechnic University
Email: merzlikin@tpu.ru
ORCID iD: 0000-0001-8545-9491
SPIN 代码: 4815-6169
Cand. Sci. (Physics and Mathematics)
俄罗斯联邦, TomskTatiana A. Shelkovnikova
Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: fflly@mail.ru
ORCID iD: 0000-0001-8089-2851
SPIN 代码: 1826-7850
MD, Cand. Sci. (Medicine)
俄罗斯联邦, TomskArtem I. Listratov
Siberian State Medical University
Email: listrat312@gmail.com
ORCID iD: 0009-0004-3202-8179
俄罗斯联邦, Tomsk
Konstantin V. Zavadovsky
Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: Konstz@cardio-tomsk.ru
ORCID iD: 0000-0002-1513-8614
SPIN 代码: 5081-3495
MD, Dr. Sci. (Medicine)
俄罗斯联邦, Tomsk参考
- Shalnova SA, Drapkina OM, Kutsenko VA, et al. Myocardial infarction in the population of some Russian regions and its prognostic value. Russian Journal of Cardiology. 2022;27(6):4952. EDN: OCPROJ doi: 10.15829/1560-4071-2022-4952
- Desai R, Mishra V, Chhina AK, et al. Cardiovascular disease risk factors and outcomes of acute myocardial infarction in young adults: evidence from 2 nationwide cohorts in the United States a decade apart. Curr Probl Cardiol. 2023;48(9):101747. doi: 10.1016/j.cpcardiol.2023.101747
- Martins Marques T, Hausenloy DJ, Sluijter JP, et al. Girao Intercellular communication in the heart: therapeutic opportunities for cardiac ischemia. Trends Mol Med. 2021;27:248–262. doi: 10.1016/j.molmed.2020.10.002
- Schuleri KH, Centola M, Evers KS, et al. Cardiovascular magnetic resonance characterization of peri-infarct zone remodeling following myocardial infarction. J Cardiovasc Magn Reson. 2012;14:24. doi: 10.1186/1532-429X-14-24
- Bodi V, Monmeneu JV, Ortiz Perez JT, et al. Prediction of Reverse Remodeling at Cardiac MR Imaging Soon after First ST-Segment-Elevation Myocardial Infarction: Results of a Large Prospective Registry. Radiology. 2016;278:54–63. doi: 10.1148/radiol.2015142674
- Del Buono MG, Garmendia CM, Seropian IM, et al. Heart Failure After ST-Elevation Myocardial Infarction: Beyond Left Ventricular Adverse Remodeling. Curr Probl Cardiol. 2022;48(8):101215. doi: 10.1016/j.cpcardiol.2022.101215
- Ibanez B, Aletras AH, Arai AE, et al. Cardiac MRI Endpoints in Myocardial Infarction Experimental and Clinical Trials: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019;74(2):238–256. doi: 10.1016/j.jacc.2019.05.024
- Ussov WYu, Babokin VE, Mochula OV, et al. Contrast-enhanced magnetic resonance tomography in patients with myocardial infarction and supraventricular tachyarrhythmias. Siberian Journal of Clinical and Experimental Medicine. 2014;29(4):33–38. EDN: TBFGPX doi: 10.29001/2073-8552-2014-29-4-33-38
- Usov VYu, Vyshlov EV, Mochula OV, et al. Contrast-ehanced MRI in time structure analysis of myocardial damage in acute infarction and early prehospital thrombolytic therapy. Medical Visualization. 2018;(2):56–69. EDN: XMLLXN doi: 10.24835/1607-0763-2018-2-56-69
- Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology. 2007;242(3):647–649. doi: 10.1148/radiol.2423061640
- Kim RJ, Wu E, Rafael A, et al. The use of contrast enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–1453. doi: 10.1056/NEJM200011163432003
- Kotu LP, Engan K, Eftestol T, et al. Segmentation of scarred and non scarred myocardium in LG enhanced CMR images using intensity based textural analysis. Annu Int Conf IEEE Eng Med Biol Soc. 2011:5698–5701. doi: 10.1109/IEMBS.2011.6091379
- Larroza A, Lopez Lereu MP, Monmeneu JV, et al. Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction. Med Phys. 2018;45(4):1471–1480. doi: 10.1002/mp.12783
- Maksimova AS, Ussov WYu, Shelkovnikova TA, et al. Cardiac MRI Radiomics: review. Siberian Journal of Clinical and Experimental Medicine. 2023;38(3):13–22. EDN: RUADYI doi: 10.29001/2073-8552-2023-39-3-13-22
- Larroza A, Materka A, Lopez Lereu MP, et al. Differentiation between acute and chronic myocardial infarction by means of texture analysis of late gadolinium enhancement and cine cardiac magnetic resonance imaging. Eur J Radiol. 2017;92:78–83. doi: 10.1016/j.ejrad.2017.04.024
- Avard E, Shiri I, Hajianfar G, et al. Non contrast Cine Cardiac Magnetic Resonance image radiomics features and machine learning algorithms for myocardial infarction detection. Comput Biol Med. 2022;141:105145. doi: 10.1016/j.compbiomed
- Felker GM, Shaw LK, O’Connor CM A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002;39(2):210–218. doi: 10.1016/s0735-1097(01)01738-7
- Liu M, Xin A, Chen T, et al. Non contrast cine cardiac magnetic resonance derived radiomics for the prediction of left ventricular adverse remodeling in patients with ST-segment elevation myocardial infarction. Korean J Radiol. 2023;24(9):827–837. doi: 10.3348/kjr.2023.0061
- Ma Q, Ma Y, Yu T, et al. Radiomics of non contrast enhanced T1 mapping: diagnostic and predictive performance for myocardial injury in acute ST-segment-elevation myocardial infarction. Korean J Radiol. 2021;22(4):535–46. doi: 10.3348/kjr.2019.0969
- Ma Q, Ma Y, Wang X, et al. A radiomic nomogram for prediction of major adverse cardiac events in ST-segment elevation myocardial infarction. Eur Radiol. 2021;31(2):1140–1150. doi: 10.1007/s00330-020-07176-y
- Chen BH, An DA, He J, et al. Myocardial extracellular volume fraction radiomics analysis for differentiation of reversible versus irreversible myocardial damage and prediction of left ventricular adverse remodeling after ST-elevation myocardial infarction. Eur Radiol. 2021;31(1):504–514. doi: 10.1007/s00330-020-07117-9
- Chang S, Han K, Kwon Y, et al. T1 Map-based radiomics for prediction of left ventricular reverse remodeling in patients with non ischemic dilated cardiomyopathy. Korean J Radiol. 2023;24:395–405. doi: 10.3348/kjr.2023.0065
- Frederiksen H, Iorgoveanu C, Mahi A. State of the Art and New Advances: Cardiac MRI. New Advances in Magnetic Resonance Imaging. 2023. Available from: http://dx.doi.org/10.5772/intechopen.112413. doi: 10.5772/intechopen.112413
- Bodi V, Monmeneu JV, Ortiz Perez JT, et al. Prediction of Reverse Remodeling at Cardiac MR Imaging Soon after First ST-Segment Elevation Myocardial Infarction: Results of a Large Prospective Registry. Radiology. 2016;278(1):54–63. doi: 10.1148/radiol.2015142674
补充文件
