The experience of using artificial intelligence for automated analysis of digital radiographs in a city hospital

Capa

Citar

Texto integral

Resumo

BACKGROUND: The volume of medical diagnostic studies continues to increase annually, intensifying the desire to implement advanced technologies in the field of medical diagnostics. One of the promising approaches that has attracted attention is the use of artificial intelligence in this area. A study was conducted on the automated analysis of chest radiographs using the AI service PhthisisBioMed at a city hospital specializing in the treatment of respiratory diseases.

AIM: The study aimed to assess the diagnostic accuracy of the artificial intelligence service “PhthisisBioMed” for the detection of respiratory pathologies in the context of a city hospital that provides 24-hour specialized care in the field of pulmonology.

MATERIALS AND METHODS: This study employed a prospective design, with the results of the artificial intelligence service available to the physician on request. This enabled the physician to review the results of the service if an alternative opinion was needed.

The reference test was conducted by radiologists at Samara City Hospital No. 4, who described the examinations performed during the testing period. The index test was performed on the software “Program for Automated Analysis of Digital Chest Radiographs/Fluorograms according to TU 62.01.29-001-96876180-2019” produced by PhthisisBioMed LLC. The PhthisisBioMed software was employed to analyze digital fluorograms of the lungs in direct anterior projection. The software automatically identified the following radiological signs of pathologies: pleural effusion, pneumothorax, atelectasis, darkening, infiltration/consolidation, dissemination, cavity, calcification/calcified shadow, and cortical layer integrity violation.

Fluorograms of patients over the age of 18 were included in the analysis. The study was conducted within the framework of research and development work No. 121051700033-3, entitled “Lung Damage of Infectious Etiology. Improvement of Methods of Detection, Diagnosis and Treatment” (14.05.2021).

RESULTS: Following the pilot operation of the PhthisisBioMed artificial intelligence service and subsequent ROC analysis, the diagnostic accuracy metrics claimed by the manufacturer of the artificial intelligence medical device were confirmed.

The service provided the probability of the presence of various pathologies. According to the highlighted labels, 63 patients (4.8%) were suspected of tuberculosis based on characteristic radiologic features. The conclusion was made independently by the radiologist, and the results were evaluated by the attending physician. The attending physician had the opportunity to compare the results and discuss them with the radiologist if differences were found.

The results of the survey of pulmonologists who participated in the study indicated that the conclusion of the artificial intelligence service was received automatically within 15 seconds, while the conclusion of the physician was received within 30 minutes or more.

CONCLUSIONS: The results of the study indicate that the implementation of the PhthisisBioMed software is expedient both in the outpatient department of the hospital in terms of assessing the annual fluorographic examination of the population, and in the pulmonology service of the city, inpatient and admission department of the hospital.

Sobre autores

B. Borodulin

Samara State Medical University

Email: borodulinbb@gmail.com
ORCID ID: 0000-0002-8847-9831
Rússia, Samara

Yu. Gogoberidze

PhthisisBioMed LLC

Autor responsável pela correspondência
Email: gut@vector.ru
ORCID ID: 0009-0001-4879-1521
Rússia, Chistopol

K. Zhilinskaya

Samara State Medical University

Email: kristizhilinskay@gmail.com
ORCID ID: 0000-0003-4209-3025
Rússia, Samara

I. Prosvirkin

PhthisisBioMed LLC

Email: pia@ftizisbiomed.ru
ORCID ID: 0009-0008-2391-3714
Rússia, Chistopol

R. Sabitov

PhthisisBioMed LLC

Email: sra@vector.ru
ORCID ID: 0009-0007-3627-9444
Rússia, Chistopol

Bibliografia

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Eco-Vector, 2024

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».