Нейронная сеть для помощи принятия клинических решений при выборе ортопедической конструкции
- Авторы: Игнатов П.М.1, Олейников А.А.1, Гуськов А.В.1, Шлыкова А.Л.1, Суров Д.А.2
 - 
							Учреждения: 
							
- Рязанский государственный медицинский университет имени академика И.П. Павлова
 - ООО «Дента Стиль Канищево»
 
 - Выпуск: Том 5, № 1S (2024)
 - Страницы: 146-148
 - Раздел: МОЛОДЫЕ УЧЕНЫЕ: тезисы конференции НПКЦ
 - URL: https://bakhtiniada.ru/DD/article/view/261127
 - DOI: https://doi.org/10.17816/DD627046
 - ID: 261127
 
Цитировать
Полный текст
Аннотация
Обоснование. Применяемые в современной стоматологии программные возможности искусственного интеллекта способны самостоятельно подбирать ортопедические конструкции исходя из условий лечения, устанавливать диагноз по данным рентгеновского исследования и интраорального сканирования челюстей. Нейронная сеть в области машинного обучения — это математическая модель, которая работает по принципу нейронной сети живого организма и способна обрабатывать входные сигналы в соответствии с весовыми коэффициентами, пропуская их через определённое число слоёв и формируя правильный ответ на выходе, который соответствует нейрону выходного слоя с самым большим значением функции активации.
Цель — создание нейронной сети, обеспечивающей помощь в принятии клинических решений во время составления ортопедического плана лечения.
Материалы и методы. С использованием среды программирования Processing и С-подобного языка программирования создана нейронная сеть. На этапе обучения сети определялось число скрытых слоёв, подбирался коэффициент обучения и определялось количество эпох обучения. Обучение сети производилось методом обратного распространения ошибки с помощью вычисления среднеквадратической ошибки сети, обратного распространения сигнала по нейросети и корректировки весовых коэффициентов с учётом коэффициента обучения.
Входным слоем (вектором) послужили клинические условия [1, 2]: состояние полости рта; аллергоанамнез; различные проявления клинической картины (индекс разрушения поверхностей зуба, витальность зубов и т.д.). Размерность выходного слоя зависела от количества используемых конструкций и составляла 19 нейронов (протезы: бюгельный, телескопический, покрывной, пластиночный; микропротезы по типу: table-top, overlay, inlay и т.д.).
Выходным слоем являлись съёмные и несъёмные протезы, выбор которых основывался на заранее разработанном алгоритме, основанном на таких клинических условиях, как:
- состояние и количество сохранившихся зубов;
 - индекс разрушения окклюзионной поверхности жевательных зубов;
 - классификация кариозных полостей по Блеку;
 - парафункции, аллергоанамнез [3, 4].
 
Результаты. Разработан алгоритм действия нейросети, в котором от врача необходимо ввести данные клинической картины после осмотра полости рта. Нейросеть, способствующая помощи в принятии клинических решений, в каждом слое проводила математические вычисления, умножая элементы входного вектора (а впоследствии — каждого слоя) на весовые коэффициенты (полученные в результате обучения нейронной сети), добавляла смещение (для попадания результатов в область вычисления функции активации), полученный результат проводился через функцию активации (Sigmoid, ReLu), выбирая выходной нейрон с самым большим результатом и прогнозируя наиболее подходящую конструкцию [5, 6].
Заключение. Таким образом, разработанная нейросеть способна предлагать клинически обоснованные варианты ортопедического плана лечения в индивидуальных ситуациях с учётом возможности применения различных видов протезов.
Полный текст
Открыть статью на сайте журналаОб авторах
Павел Максимович Игнатов
Рязанский государственный медицинский университет имени академика И.П. Павлова
							Автор, ответственный за переписку.
							Email: pavel08122002@yandex.ru
				                	ORCID iD: 0009-0009-6326-3194
				                																			                												                	Россия, 							Рязань						
Александр Александрович Олейников
Рязанский государственный медицинский университет имени академика И.П. Павлова
														Email: bandprod@yandex.ru
				                	ORCID iD: 0000-0002-2245-1051
				                	SPIN-код: 5579-5202
																		                												                	Россия, 							Рязань						
Александр Викторович Гуськов
Рязанский государственный медицинский университет имени академика И.П. Павлова
														Email: guskov74@gmail.com
				                	ORCID iD: 0000-0001-9612-0784
				                	SPIN-код: 3758-6378
																		                												                	Россия, 							Рязань						
Алина Львовна Шлыкова
Рязанский государственный медицинский университет имени академика И.П. Павлова
														Email: shlykova.lina@bk.ru
				                	ORCID iD: 0009-0001-7963-203X
				                																			                												                	Россия, 							Рязань						
Дмитрий Андреевич Суров
ООО «Дента Стиль Канищево»
														Email: surovda@gmail.com
				                	ORCID iD: 0009-0008-5621-272X
				                																			                												                	Россия, 							Рязань						
Список литературы
- Ермолаева П.А. Сравнение термопластов и акриловых пластмасс для съемного протезирования // Научное обозрение. Медицинские науки. 2017. № 4. С. 16–20. EDN: YFVNZV
 - Таценко Е.Г., Лапина Н.В., Скорикова Л.А. Прогнозирование адаптации пациентов к съемным зубным конструкциям // Международный журнал прикладных и фундаментальных исследований. 2017. № 2. С. 182–188.
 - Тян А.А. Преимущество термопластических материалов в ортопедической стоматологии // Научное обозрение. Медицинские науки. 2017. № 4. С. 119–123. EDN: YFVOHN
 - Рубцова Е.А., Чиркова Н.В., Полушкина Н.А., и др. Оценка микробиологического исследования съемных зубных протезов из термопластического материала // Вестник новых медицинских технологий. 2017. № 2. С. 267–270. EDN: ZBADWD
 - Долгалев А.А., Мураев А.А., Ляхов П.А., и др. Архитектоника системы искусственного интеллекта и перспективы применения технологий машинного обучения в стоматологии. Обзор литературы // Главный врач юга России. 2022. № 5(86). EDN: VSGWMU
 - De Angelis F., Pranno N., Franchina A., et al. Artificial Intelligence: A New Diagnostic Software in Dentistry: A Preliminary Performance Diagnostic Study // International Journal of Environmental Research and Public Health. 2022. Vol. 19, N 3. P. 1728. doi: 10.3390/ijerph19031728
 
Дополнительные файлы
				
			
						
						
						
					
						
									

