Application of large language models in radiological diagnostics: a scoping review

Cover Image

Cite item

Full Text

Abstract

BACKGROUND: Modern large language models show potential for application in radiological diagnostics across a wide range of routine tasks.

AIM: The work aimed to conduct a scoping review of the application of large language models in radiological diagnostics by analyzing possible use-case scenarios and assessing the methodological quality of relevant studies.

METHODS: Two search strategies were employed: a primary search (PubMed and eLibrary) targeting full-text publications with well-developed methodology, and a supplementary search (PubMed) aimed at broader coverage of large language model use cases in radiological diagnostics during 2023–2025. Extracted data included bibliometric characteristics, study objectives, use-case scenarios of large language models, nosological profiles, key methodological parameters, and both quantitative and qualitative indicators of diagnostic performance—for both the models and the specialists involved, including their number and experience. The quality was assessed using the modified QUADAS-CAD questionnaire.

RESULTS: The primary search yielded 9 studies for analysis; the supplementary search yielded 216. A total of 9 major use-case scenarios for large language models in radiology were identified. The most common among them was the rephrasing of radiology reports in order to improve their accessibility for patient understanding. Models predominantly used were GPT-4 and BERT, along with GPT-3.5, Llama 2, Med42, GPT-4V, and Gemini Pro. The large language model GPT-4 demonstrated high diagnostic accuracy in identifying brain tumors (73.0%), myocarditis (83.0%), and in making decisions on invasive procedures for acute coronary syndrome (86.0%). In turn, it demonstrated low diagnostic accuracy for nervous system disorders of various etiologies (50.0%) and for musculoskeletal diseases (43.0%). The BERT model exhibited high diagnostic accuracy in detecting pulmonary nodules (99.0%) and signs of intracranial hemorrhage (sensitivity and specificity: 97.0% and 90.0%, respectively), as well as in report classification (accuracy: 84.3%).

Most articles (88.9%) carried a high risk of bias. The main reasons for this included small and imbalanced sample sizes, overlap between training and test datasets, and insufficiently precise preparation and description of reference standards.

CONCLUSION: The diagnostic performance of large language models varies significantly across articles. Their clinical implementation requires standardized, methodologically robust research, including larger and more balanced samples, optimization of the structure and volume of datasets, separation of training and testing samples, thorough preparation and description of reference standards, as well as the accumulation of empirical data for specific radiological tasks.

About the authors

Yuriy A. Vasilev

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: npcmr@zdrav.mos.ru
ORCID iD: 0000-0002-5283-5961
SPIN-code: 4458-5608

MD, Cand. Sci. (Medicine)

Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051

Roman V. Reshetnikov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: ReshetnikovRV1@zdrav.mos.ru
ORCID iD: 0000-0002-9661-0254
SPIN-code: 8592-0558

Cand. Sci. (Physics and Mathematics)

Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051

Olga G. Nanova

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Author for correspondence.
Email: nanova@mail.ru
ORCID iD: 0000-0001-8886-3684
SPIN-code: 6135-4872

Cand. Sci. (Biology)

Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051

Anton V. Vladzymyrskyy

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: VladzimirskijAV@zdrav.mos.ru
ORCID iD: 0000-0002-2990-7736
SPIN-code: 3602-7120

MD, Dr. Sci. (Medicine)

Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051

Kirill M. Arzamasov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: ArzamasovKM@zdrav.mos.ru
ORCID iD: 0000-0001-7786-0349
SPIN-code: 3160-8062

MD, Dr. Sci. (Medicine)

Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051

Olga V. Omelyanskaya

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: o.omelyanskaya@npcmr.ru
ORCID iD: 0000-0002-0245-4431
SPIN-code: 8948-6152
Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051

Maria R. Kodenko

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: KodenkoMR@zdrav.mos.ru
ORCID iD: 0000-0002-0166-3768
SPIN-code: 5789-0319

Cand. Sci. (Engineering)

Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051

Rustam A. Erizhokov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: ErizhokovRA@zdrav.mos.ru
ORCID iD: 0009-0007-3636-2889
SPIN-code: 2274-6428

MD

Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051

Anastasia P. Pamova

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: PamovaAP@zdrav.mos.ru
ORCID iD: 0000-0002-0041-3281
SPIN-code: 5146-4355

MD, Cand. Sci. (Medicine)

Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051

Seal R. Seradzhi

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: SeradzhiSR@zdrav.mos.ru
ORCID iD: 0009-0000-3990-6668
Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051

Ivan A. Blokhin

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: BlokhinIA@zdrav.mos.ru
ORCID iD: 0000-0002-2681-9378
SPIN-code: 3306-1387

MD, Cand. Sci. (Medicine)

Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051

Anna P. Gonchar

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; Moscow City Hospital named after S.S. Yudin

Email: GoncharAP@zdrav.mos.ru
ORCID iD: 0000-0001-5161-6540
SPIN-code: 3513-9531

MD, Cand. Sci. (Medicine)

Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051; Moscow

Pavel B. Gelezhe

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: GelezhePB@zdrav.mos.ru
ORCID iD: 0000-0003-1072-2202
SPIN-code: 4841-3234

MD, Cand. Sci. (Medicine)

Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051

Dina A. Akhmedzyanova

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: AkhmedzyanovaDA@zdrav.mos.ru
ORCID iD: 0000-0001-7705-9754
SPIN-code: 6983-5991

MD

Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051

Yuliya F. Shumskaya

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: shumskayayf@zdrav.mos.ru
ORCID iD: 0000-0002-8521-4045
SPIN-code: 3164-5518

MD

Russian Federation, 24 Petrovka st, bldg 1, Moscow, 127051

References

  1. Cherif H, Moussa C, Missaoui AM, et al. Appraisal of ChatGPT’s aptitude for medical education: comparative analysis with third-year medical students in a pulmonology examination. JMIR Medical Education. 2024;10:e52818. doi: 10.2196/52818 EDN: OFMTDE
  2. Kim W, Kim BC, Yeom HG. Performance of large language models on the Korean Dental licensing examination: a comparative study. International Dental Journal. 2025;75(1):176–184. doi: 10.1016/j.identj.2024.09.002 EDN: JDFMDL
  3. Busch F, Hoffmann L, dos Santos DP, et al. Large language models for structured reporting in radiology: past, present, and future. European Radiology. 2024;35(5):2589–2602. doi: 10.1007/s00330-024-11107-6 EDN: PNFKNR
  4. Lecler A, Duron L, Soyer P. Revolutionizing radiology with GPT-based models: Current applications, future possibilities and limitations of ChatGPT. Diagnostic and Interventional Imaging. 2023;104(6):269–274. doi: 10.1016/j.diii.2023.02.003EDN: FGMMTY
  5. Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine. 2018;169(7):467–473. doi: 10.7326/M18-0850
  6. Vasilev YuA, Vladzymyrskyy AV, Omelyanskaya OV, et al. Methodological recommendations for preparing a systematic review. Moscow: Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; 2023. (In Russ.) EDN: XKXHDA
  7. Kodenko MR, Vasilev YA, Vladzymyrskyy AV, et al. Diagnostic accuracy of ai for opportunistic screening of abdominal aortic aneurysm in CT: a systematic review and narrative synthesis. Diagnostics. 2022;12(12):3197. doi: 10.3390/diagnostics12123197 EDN: ERWYPX
  8. Horiuchi D, Tatekawa H, Oura T, et al. ChatGPT’s diagnostic performance based on textual vs. visual information compared to radiologists’ diagnostic performance in musculoskeletal radiology. European Radiology. 2024;35(1):506–516. doi: 10.1007/s00330-024-10902-5 EDN: JAHWFM
  9. Mitsuyama Y, Tatekawa H, Takita H, et al. Comparative analysis of GPT-4-based ChatGPT’s diagnostic performance with radiologists using real-world radiology reports of brain tumors. European Radiology. 2024;35(4):1938–1947. doi: 10.1007/s00330-024-11032-8 EDN: UHMLBQ
  10. Kaya K, Gietzen C, Hahnfeldt R, et al. Generative Pre-trained Transformer 4 analysis of cardiovascular magnetic resonance reports in suspected myocarditis: A multicenter study. Journal of Cardiovascular Magnetic Resonance. 2024;26(2):101068. doi: 10.1016/j.jocmr.2024.101068 EDN: TSRLJX
  11. Grolleau E, Couraud S, Jupin Delevaux E, et al. Incidental pulmonary nodules: Natural language processing analysis of radiology reports. Respiratory Medicine and Research. 2024;86:101136. doi: 10.1016/j.resmer.2024.101136 EDN: DHDPIX
  12. Khoruzhaya AN, Kozlov DV, Arzamasov KM, Kremneva EI. Comparison of an ensemble of machine learning models and the BERT language model for analysis of text descriptions of brain CT reports to determine the presence of intracranial hemorrhage. Sovremennye tehnologii v medicine. 2024;16(1):27–36. doi: 10.17691/stm2024.16.1.03 EDN: AXXVVD
  13. Han T, Adams LC, Bressem KK, et al. Comparative analysis of multimodal large language model performance on clinical vignette questions. JAMA. 2024;331(15):1320–1321. doi: 10.1001/jama.2023.27861 EDN: KPFLZG
  14. Horiuchi D, Tatekawa H, Shimono T, et al. Accuracy of ChatGPT generated diagnosis from patient's medical history and imaging findings in neuroradiology cases. Neuroradiology. 2023;66(1):73–79. doi: 10.1007/s00234-023-03252-4 EDN: SRFGAA
  15. Wataya T, Miura A, Sakisuka T, et al. Comparison of natural language processing algorithms in assessing the importance of head computed tomography reports written in Japanese. Japanese Journal of Radiology. 2024;42(7):697–708. doi: 10.1007/s11604-024-01549-9 EDN: VAKPBV
  16. Cagnina A, Salihu A, Meier D, et al. Assessing the need for coronary angiography in high-risk non-ST-elevation acute coronary syndrome patients using artificial intelligence and computed tomography. The International Journal of Cardiovascular Imaging. 2024;41(1):55–61. doi: 10.1007/s10554-024-03283-9 EDN: JMBFSX
  17. Gallifant J, Afshar M, Ameen S, et al. The TRIPOD-LLM reporting guideline for studies using large language models. Nature Medicine. 2025;31(1):60–69. doi: 10.1038/s41591-024-03425-5 EDN: KAPIXF
  18. Tripathi S, Alkhulaifat D, Doo FX, et al. Development, evaluation, and assessment of large language models (DEAL) checklist: a technical report. NEJM AI. 2025;2(6). doi: 10.1056/AIp2401106
  19. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B: Statistical Methodology. 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x
  20. Hollestein LM, Lo SN, Leonardi-Bee J, et al. MULTIPLE ways to correct for MULTIPLE comparisons in MULTIPLE types of studies. British Journal of Dermatology. 2021;185(6):1081–1083. doi: 10.1111/bjd.20600 EDN: QQWVVP
  21. Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ. 2024;385:e078378. doi: 10.1136/bmj-2023-078378 EDN: WSTQKK
  22. Cohen JF, Korevaar DA, Altman DG, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open. 2016;6(11):e012799. doi: 10.1136/bmjopen-2016-012799
  23. Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351:h5527. doi: 10.1136/bmj.h5527
  24. Vasiliev YuA, Vlazimirsky AV, Omelyanskaya OV, et al. Methodology for testing and monitoring artificial intelligence-based software for medical diagnostics. Digital Diagnostics. 2023;4(3):252–267. doi: 10.17816/DD321971 EDN: UEDORU
  25. Vasilev YuA, Bobrovskaya TM, Arzamasov KM, et al. Medical datasets for machine learning: fundamental principles of standartization and systematization. Manager Zdravookhranenia. 2023; (4):28–41. doi: 10.21045/1811-0185-2023-4-28-41 EDN: EPGAMD
  26. Vinogradova IA, Nizovtsova LA, Omelyanskaya OV. Innovative strategic session in the scientific activity of the Center for Diagnostics and Telemedicine. Digital Diagnostics. 2022;3(4):414–420. doi: 10.17816/DD111833 EDN: DLRLVI
  27. Kalinina ML, Svitachev AP, Biswas D, Vishnu P. Comparison of awareness and attitudes toward artificial intelligence among Russian- and English-speaking students at Orenburg State Medical University. Digital Diagnostics. 2023;4(1S):62–65. doi: 10.17816/DD430346 EDN: DIKOYA

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplement 1: List of the included studies from the additional search and their basic characteristics
Download (139KB)
3. Fig. 1. Flow chart of the primary systematic literature search.

Download (268KB)
4. Fig. 2. Flow chart of additional systematic literature search.

Download (132KB)
5. Fig. 3. Assessment of the risk of systematic error using the modified QUADAS-CAD questionnaire: QUADAS-CAD (Quality Assessment of Diagnostic Accuracy Studies Computer-Aided Detection) is a specialized modified questionnaire for assessing the risk of systematic errors and the applicability of research in the field of artificial intelligence technologies.

Download (246KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».