Radiomics for diagnosing clinically significant prostate cancer PI-RADS 3: what is already known and what to do next?

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Prostate cancer is currently the second most commonly diagnosed cancer in men. The second edition of the Prostate Imaging Magnetic Resonance Imaging Data Assessment and Reporting System (PI-RADS) was released in 2019 to standardize the diagnostic process. Within this classification, the PI-RADS 3 category indicates an intermediate risk of clinically significant prostate cancer. There is currently no consensus in the literature regarding the optimal treatment for patients in this category. Some researchers advocate for biopsy as a means of further evaluation, while others propose a strategy of active surveillance for these patients.

AIM: The aim of this study is to analyze and compare existing diagnostic models based on radiomics to differentiate and detect clinically significant prostate cancer in patients with a PI-RADS 3 category.

MATERIALS AND METHODS: A comprehensive search of the PubMed, Scopus, and Web of Science databases was conducted using the following keywords: PI-RADS 3, radiomics, texture analysis, clinically significant prostate cancer, with additional emphasis on studies evaluated by Radiology Quality Score. The selected studies were required to meet the following criteria: (1) identification of PI-RADS 3 according to version 2.1 guidelines, (2) use of systemic biopsy as a control, (3) use of tools compatible with the IBSI standard for analyzing radiologic features, and (4) detailed description of methodology. Consequently, four meta-analyses and 12 original articles were selected.

RESULTS: Radiomics-based diagnostic models have demonstrated considerable potential for enhancing the accuracy of detecting clinically significant prostate cancer in the PI-RADS 3 category using the PI-RADS V2.1 system. However, studies by A. Stanzione A. et al. and J. Bleker et al. have identified quality issues with such models, which constrains their clinical application based on low Radiology Quality Score values. In contrast, the works of T. Li et al. and Y. Hou et al. proposed innovative methods, including nomogram development and the application of machine learning, which demonstrated the potential of radiomics in improving diagnosis for this category. This indicates the potential for further development and application of radiomics in clinical practice.

CONCLUSIONS: Although the models developed today cannot completely replace PI-RADS, the inclusion of radiomics can greatly enhance the efficiency of the diagnostic process by providing radiologists with quantitative and qualitative criteria that will enable the diagnosis of prostate cancer with greater confidence.

About the authors

Alexandra S. Tyan

A.V. Vishnevsky National Medical Research Center of Surgery

Author for correspondence.
Email: tyan_a_s@staff.sechenov.ru
ORCID iD: 0009-0007-4193-7413
Russian Federation, Moscow

Grigoriy G. Karmazanovskij

A.V. Vishnevsky National Medical Research Center of Surgery

Email: karmazanovsky@yandex.ru
ORCID iD: 0000-0002-9357-0998
Russian Federation, Moscow

Natalia A. Karelskaya

A.V. Vishnevsky National Medical Research Center of Surgery

Email: karelskaya.n@yandex.ru
Russian Federation, Moscow

Evgeniy V. Kondratyev

A.V. Vishnevsky National Medical Research Center of Surgery

Email: evgenykondratiev@gmail.com
Russian Federation, Moscow

Alexander D. Kovalev

A.V. Vishnevsky National Medical Research Center of Surgery

Email: aledmikov@yandex.ru
Russian Federation, Moscow

References

  1. Westphalen AC, McCulloch CE, Anaokar JM, et al. Variability of the positive predictive value of PI-RADS for prostate MRI across 26 centers: experience of the society of abdominal radiology prostate cancer disease-focused panel. Radiology. 2020;296(1):76–84. doi: 10.1148/radiol.2020190646
  2. Ferro M, de Cobelli O, Musi G, et al. Radiomics in prostate cancer: An up-to-date review. Therapeutic Advances in Urology. 2022;14:17562872221109020. doi: 10.1177/17562872221109020
  3. Wadera A, Alabousi M, Pozdnyakov A, et al. Impact of PI-RADS category 3 lesions on the diagnostic accuracy of MRI for detecting prostate cancer and the prevalence of prostate cancer within each PI-RADS category: A systematic review and meta-analysis. The British journal of radiology. 2021;94(1118):20191050. doi: 10.1259/bjr.20191050
  4. Li T, Sun L, Li Q, et al. Development and validation of a radiomics nomogram for predicting clinically significant prostate cancer in PI-RADS 3 lesions. Frontiers in oncology. 2022;11:825429. doi: 10.3389/fonc.2021.825429
  5. Qi Y, Zhang S, Wei J, et al. Multiparametric MRI-Based Radiomics for Prostate Cancer Screening With PSA in 4–10 ng/mL to Reduce Unnecessary Biopsies. Journal of Magnetic Resonance Imaging. 2020;51(6):1890–1899. doi: 10.1002/jmri.27008
  6. Penzias G, Singanamalli A, Elliott R, et al. Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings. PloS one. 2018;13(8):e0200730. doi: 10.1371/journal.pone.0200730
  7. Corsi A, De Bernardi E, Bonaffini PA, et al. Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical–Radiological Model. Journal of Clinical Medicine. 2022;11(21):6304. doi: 10.3390/jcm11216304
  8. Hectors SJ, Chen C, Chen J, et al. Magnetic Resonance Imaging Radiomics-Based Machine Learning Prediction of Clinically Significant Prostate Cancer in Equivocal PI-RADS 3 Lesions. Journal of Magnetic Resonance Imaging. 2021;54(5):1466–1473. doi: 10.1002/jmri.27692
  9. Jin P, Shen J, Yang L, et al. Machine learning-based radiomics model to predict benign and malignant PI-RADS v2. 1 category 3 lesions: a retrospective multi-center study. BMC Medical Imaging. 2023;23(1):1–13. doi: 10.1186/s12880-023-01002-9
  10. Stanzione A, Gambardella M, Cuocolo R, et al. Prostate MRI radiomics: A systematic review and radiomic quality score assessment. European journal of radiology. 2020;129:109095. doi: 10.1016/j.ejrad.2020.109095
  11. Bleker J, Kwee TC, Yakar D. Quality of multicenter studies using MRI radiomics for diagnosing clinically significant prostate cancer: a systematic review. Life. 2022;12(7):946. doi: 10.3390/life12070946
  12. Hou Y, Bao ML, Wu CJ, et al. A radiomics machine learning-based redefining score robustly identifies clinically significant prostate cancer in equivocal PI-RADS score 3 lesions. Abdominal Radiology. 2020;45:4223–4234. doi: 10.1007/s00261-020-02678-1

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».