Predicting atrial fibrillation in comorbid patients with arterial hypertension and chronic obstructive pulmonary disease using laboratory research methods: a machine learning approach

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

BACKGROUND: Arterial hypertension and chronic obstructive pulmonary disease have a deleterious effect on the structure of the heart, leading to the development of atrial fibrillation, which remains the leading cause of cerebral stroke and premature death [1]. Consequently, the early identification of atrial fibrillation risk factors in patients with arterial hypertension and chronic obstructive pulmonary disease is of paramount importance for the prevention of such conditions. This is why predictive cardiology employs machine learning methods, which are demonstrably superior to classical statistical methods of prediction [2–4].

AIM: The study aimed to develop a prognostic model of atrial fibrillation in comorbid patients with arterial hypertension and chronic obstructive pulmonary disease based on multilayer perceptron.

MATERIALS AND METHODS: The study included 419 patients treated at the University Clinical Hospital No. 4 of the I.M. Sechenov First Moscow State Medical University. Group 1 consisted of 91 (21.7%) patients with a verified diagnosis of atrial fibrillation, while Group 2 comprised 328 (78.3%) patients without atrial fibrillation. The random forest machine learning algorithm was used to identify predictors, which were then utilized to develop a neural network of the multilayer perceptron type. This consisted of two layers: an input layer of 12 neurons with the ReLU activation function and an output layer that receives input data from the previous layer and transmits them to one output with the sigmoid activation function. The threshold value, sensitivity, specificity, and diagnostic efficiency of the obtained model were determined using receiver operating characteristic analysis with the calculation of the area under the curve (AUC).

RESULTS: By the first stage of prognostic model development, the most significant predictors of atrial fibrillation development were selected by the random forest machine learning algorithm. The model was developed using three variables: C-reactive protein concentration (odds ratio, OR 1.04; 95% confidence interval, CI 1.015–1.067; p=0.002), erythrocyte sedimentation rate (OR 1.04; 95% CI 1.019–1.069; p=0.002), and creatinine concentration (OR 1.03; 95% CI 1.011–1.042; p <0.001). These variables were used to train a multilayer perceptron model on a test sample for 500 epochs.

Following training, the developed model exhibited a sensitivity of 85%, a specificity of 80%, and a diagnostic efficiency of 79.6%. AUC amounted to 0.900.

CONCLUSIONS: The study resulted in the development of a prognostic model based on the application of machine learning methods, which exhibited favorable metrics. This model may be considered a valuable tool for clinical practice.

Толық мәтін

##article.viewOnOriginalSite##

Авторлар туралы

Evgeniya Kazantseva

The First Sechenov Moscow State Medical University

Хат алмасуға жауапты Автор.
Email: kazantseva_ev@inbox.ru
ORCID iD: 0000-0001-8552-5364
SPIN-код: 4018-8734
Ресей, Moscow

Aleksander Ivannikov

The First Sechenov Moscow State Medical University

Email: ivannikov_a95@mail.ru
ORCID iD: 0000-0002-9738-1801
Ресей, Moscow

Aida Tarzimanova

The First Sechenov Moscow State Medical University

Email: tarzimanova_a_i@staff.sechenov.ru
Ресей, Moscow

Valeriy Podzolkov

The First Sechenov Moscow State Medical University

Email: podzolkov_v_i@staff.sechenov.ru
Ресей, Moscow

Әдебиет тізімі

  1. Shapkina MYu, Ryabikov AN, Titarenko AV, et al. Arterial hypertension, blood pressure levels and risk of atrial fibrillation in Siberian residents. Ateroscleroz. 2023;19(3):258–261. (In Russ). doi: 10.52727/2078-256X-2023-19-3-258-261
  2. Mishkin IA, Kontsevaya AV, Gusev AV, Drapkina OM. Prediction of cardiovascular events using proportional risk models and machine learning models: A systematic review. Current problems of health care and medical statistics. 2023;(2):804–829. EDN: PQZXOT doi: 10.24412/2312-2935-2023-2-804-829
  3. Seetharam K, Balla S, Bianco C, et al. Applications of machine learning in cardiology. Cardiology and Therapy. 2022;11(3):355–368. doi: 10.1007/s40119-022-00273-7
  4. Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial intelligence in cardiology. Journal of the American College of Cardiology. 2018;71(23):2668–2679. doi: 10.1016/j.jacc.2018.03.521

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Eco-Vector, 2024

Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».