Artificial intelligence in clinical physiology: How to improve learning agility

Cover Image

Cite item

Abstract

Clinical physiology involves a complete, comprehensive, multilateral study of the functions of both affected and healthy organs, which allows us to assess the compensatory capabilities of the body.

Artificial intelligence is increasingly being used in medicine, including in clinical physiology. This is facilitated by the increase in computing processing power, development of cloud services and datasets, and numerous scientific articles demonstrating the effectiveness and viability of such intelligent solutions.

Although the approach to medical dataset development is generally similar, there are a number of key features and significant differences in clinical physiology. Artificial intelligence systems in clinical physiology may be effectively trained and applied in practice by following the recommendations in this study.

The national standard of the Russian Federation GOST R 59921.9-2022, which has entered into force, is included in the set of standards “Artificial Intelligence systems in clinical medicine” and establishes additional requirements for data analysis algorithms and test methods of artificial intelligence systems used in the field of clinical physiology. A crucial feature of the created standard is its qualimetric type (i.e., it has a mandatory set of demonstration data).

Russia is one of the first countries to start developing quasi-metric standards worldwide, and 15 industry standards in the field of artificial intelligence (2 of them in medicine) will come into force this year.

About the authors

Dmitry V. Shutov

Moscow Center for Diagnostics and Telemedicine

Author for correspondence.
Email: ShutovDV@zdrav.mos.ru
ORCID iD: 0000-0003-1836-3689
SPIN-code: 9381-2456

MD, Dr. Sci. (Med.)

Russian Federation, Moscow

Dariya E. Sharova

Moscow Center for Diagnostics and Telemedicine

Email: ShutovDV@zdrav.mos.ru
ORCID iD: 0000-0001-5792-3912
SPIN-code: 1811-7595
Russian Federation, Moscow

Liya R. Abuladze

Moscow Center for Diagnostics and Telemedicine

Email: AbuladzeLR@zdrav.mos.ru
ORCID iD: 0000-0001-6745-1672
SPIN-code: 8640-9989

Junior Research Associate

Russian Federation, Moscow

Dmitrii V. Drozdov

National Medical Research Center of Cardiology

Email: cardioexp@gmail.com
ORCID iD: 0000-0001-7374-3604
SPIN-code: 2279-9657

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

References

  1. Kurzanov AN. Clinical physiology: formation, goals, tasks, limits of competence, place in the system of higher professional medical education. International journal of experimental education. 2012;(4):128–130. (In Russ).
  2. Gusev AV, Vladzimirsky AV, Sharova DE, et al. Development of research and development in the field of artificial intelligence technologies for healthcare in the Russian Federation: results of 2021. Digital Diagnostics. 2022;3(3):178–194. (In Russ). doi: 10.17816/DD107367
  3. Al-Mousily MF, Baker GH, Jackson L, et al. The use of a traditional nonlooping event monitor versus a loan-based program with a smartphone ECG device in the pediatric cardiology clinic. Cardiovasc Digit Heal J. 2021;2(1):71–75. doi: 10.1016/j.cvdhj.2020.11.008
  4. Ding EY, Pathiravasan CH, Schramm E, et al. Design, deployment, and usability of a mobile system for cardiovascular health monitoring within the electronic Framingham Heart Study. Cardiovasc Digit Heal J. 2021;2(3):171–178. doi: 10.1016/j.cvdhj.2021.04.001
  5. Bashar SK, Hossain MB, Lázaro J, et al. Feasibility of atrial fibrillation detection from a novel wearable armband device. Cardiovasc Digit Heal J. 2021;2(3):179–191. doi: 10.1016/j.cvdhj.2021.05.004
  6. Goodwin AJ, Eytan D, Greer RW, et al. A practical approach to storage and retrieval of high-frequency physiological signals. Physiol Meas. 2020;41(3):035008. doi: 10.1088/1361-6579/ab7cb5
  7. Bartlett VL, Ross JS, Shah ND, et al. Physical activity, patient-reported symptoms, and clinical events: Insights into postprocedural recovery from personal digital devices. Cardiovasc Digit Heal J. 2021;2(4):212–221. doi: 10.1016/j.cvdhj.2021.06.002
  8. Mishra S, Khatwani G, Patil R, et al. ECG paper record digitization and diagnosis using deep learning. J Med Biol Eng. 2021;41(4):422–432. doi: 10.1007/s40846-021-00632-0
  9. Kashou AH, Mulpuru SK, Deshmukh AJ, et al. An artificial intelligence-enabled ECG algorithm for comprehensive ECG interpretation: Can it pass the ‘Turing test’? Cardiovasc Digit Heal J. 2021;2(3):164–170. doi: 10.1016/j.cvdhj.2021.04.002
  10. Wagner P, Strodthoff N, Bousseljot RD, et al. PTB-XL, a large publicly available electrocardiography dataset. Sci Data. 2020;7(1):154. doi: 10.1038/s41597-020-0495-6
  11. Zheng J, Zhang J, Danioko S, et al. A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients. Sci Data. 2020;7(1):48. doi: 10.1038/s41597-020-0386-x
  12. M 80 Regulations for the preparation of data sets with a description of approaches to the formation of a representative sample of data. Part 1. Methodological recommendations. Ed by S.P. Morozov, A.V. Vladzimirsky, A.E. Andreichenko, et al. Moscow; 2022. 40 р. (The series “Best practices of radiation and instrumental diagnostics”). (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Flowchart for conducting clinical trials with data sets (one implementation option)

Download (117KB)
3. Figure 2. An example file from the demo data set of GOST R 59921.9-2022, Artificial Intelligence Systems in Clinical Medicine. Algorithms for data analysis in clinical physiology. Testing methods

Download (409KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».