Dynamic Performance of Concrete Considering Initial Stresses and Creep
- Authors: Savin S.Y.1, Sharipov M.Z.1
-
Affiliations:
- Moscow State University of Civil Engineering (National Research University) (MGSU)
- Issue: Vol 7, No 3 (2024)
- Pages: 24-33
- Section: THEORY OF CONCRETE AND REINFORCED CONCRETE
- URL: https://bakhtiniada.ru/2949-1622/article/view/276597
- ID: 276597
Cite item
Full Text
Abstract
Keywords
About the authors
S. Yu. Savin
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: suwin@yandex.ru
ORCID iD: 0000-0002-6697-3388
SPIN-code: 1301-4838
M. Z. Sharipov
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: manonkhoja.sh@bk.ru
References
- Caredda G. et al. Learning from the progressive collapse of buildings // Developments in the Built Environment. 2023. Vol. 15. P. 100194.
- Sasani M., Sagiroglu S. Progressive Collapse Resistance of Hotel San Diego // Journal of Structural Engineering. 2008. Vol. 134. Nо. 3. Pр. 478–488.
- Adam J.M. et al. Dynamic performance of a real-scale reinforced concrete building test under a corner-column failure scenario // Eng Struct. Elsevier Ltd, 2020. Vol. 210. P. 110414.
- Meng L. et al. Study on dynamic properties of lightweight ultra-high performance concrete (L-UHPC) // Constr Build Mater. Elsevier Ltd, 2023. Vol. 399.
- Баженов Ю.М. Бетон при динамическом нагружении. М. : Стройиздат, 1970. 271 с.
- Гениев Г.А. Метод определения динамических пределов прочности бетона // Бетон и железобетон. 1998. № 1. С. 18–19.
- Nam J.W. et al. Analytical study of finite element models for FRP retrofitted concrete structure under blast loads // International Journal of Damage Mechanics. 2009. Vol. 18. Nо. 5. Pр. 461–490.
- Yang Y., Wu C., Liu Z. Rate dependent behaviour of 3D printed ultra-high performance fibre-reinforced concrete under dynamic splitting tensile // Compos Struct. Elsevier Ltd, 2023. Vol. 309.
- Levtchitch V. et al. Seismic Performance Capacities of Old Concrete // 13th World Conference on Earthquake Engineering. Vancouver, B.C., Canada. 2004. Pр. 1–15.
- Zhou Y. Concrete creep and thermal effects on the dynamic behavior of a concrete-filled steel tube arch bridge // Journal of Vybroengineering. 2014. Vol. 16. Nо. 4. Pр. 1735–1744.
- Tošić N., Aidarov S., de la Fuente A. Systematic Review on the Creep of Fiber-Reinforced Concrete // Materials. MDPI, 2020. Vol. 13. Nо. 22.
- Тамразян А.Г. К устойчивости внецентренно сжатых железобетонных элементов с малым эксцентриситетом с учетом реологических свойств бетона // Железобетонные конструкции. 2023; № 2 (2). С. 48–57. doi: 10.22227/2949-1622.2023.2.48-57
- Standard of RF GOST 24544–2020. Concretes. Methods of shrinkage and creep flow determination / ed. JSC Research and Development Center “Construction”. M. : Standardinform, 2021.
- Fedorova N.V., Medyankin M.D., Bushova O.B. Experimental Determination of The Parameters of the Static-Dynamic Deformation of Concrete under Loading Modal // Building and reconstruction. 2020. Vol. 89. Nо. 3. Pр. 72–81.
- Fedorova N. et al. Experimental and Theoretical Studies of the Concrete Static-Dynamic Stress–Strain Curves // Lecture Notes in Civil Engineering. 2022. Vol. 170. Pр. 151–161.
- Fedorova N. V., Medyankin M.D., Bushova O.B. Determination of Static-Dynamic Deformation Parameters of Concrete // Promyshlennoe i Grazhdanskoe Stroitel’stvo. 2020. Nо. 1. Pр. 4–11.
- Savin S.Yu., Medyankin M.D., Sharipov M.Z. Deformation of Fiber Concrete Under a Single Dynamic Impact Taking into Account the Influence of Initial Stresses from the Static Load // Building and reconstruction. 2022. Vol. 99. Nо. 1. Pр. 76–88.
Supplementary files
