A contribution of the generalized bochner technique to the geometry of complete minimal submanifolds
- Authors: Stepanov S.E.1,2, Tsyganok I.I.2
-
Affiliations:
- Russian Institute for Scientific and Technical Information of the Russian Academy of Sciences
- Financial University under the Government of the Russian Federation
- Issue: Vol 236 (2024)
- Pages: 22-30
- Section: Статьи
- URL: https://bakhtiniada.ru/2782-4438/article/view/275172
- DOI: https://doi.org/10.36535/2782-4438-2024-236-22-30
- ID: 275172
Cite item
Full Text
Abstract
In this paper, based on methods of the Bochner technique, which is an important part of the geometric analysis, we establish conditions under which minimal and stable minimal submanifolds in Riemannian manifolds are characterized as totally geodesic submanifolds.
About the authors
Sergey E. Stepanov
Russian Institute for Scientific and Technical Information of the Russian Academy of Sciences; Financial University under the Government of the Russian Federation
Author for correspondence.
Email: s.e.stepanov@mail.ru
Russian Federation, Moscow; Moscow
Irina I. Tsyganok
Financial University under the Government of the Russian Federation
Email: i.i.tsyganok@mail.ru
Russian Federation, Moscow
References
- Григорьян А. А. Стохастически полные многообразия и суммируемые гармонические функции// Изв. АН СССР. Сер. мат. — 1988. — 52, № 5. — С. 1102–1108.
- Степанов С. Е., Цыганок И. И. Поточечное ортогональное расщепление пространства TT-тензоров//Диффер. геом. многообр. фигур. — 2023. — 54, № 2. — С. 45–53.
- Besse A. Einstein Manifolds. — Berlin: Springer, 1987.
- Carlotto A. The general relativistic constraint equations// Living Rev. Relativ. — 2021. — 24.—2.
- do Carmo M. P., Chern S. S., Kobayashi S. Minimal submanifolds of a sphere with second fundamental form of constant length// in: Functional Analysis and Related Fields (Browder F. E., ed.). — Berlin–Heidelberg–New York: Springer-Verlag, 1970. — P. 59–75.
- Catino G., Mastrolia P., Roncoroni A. Two rigidity results for stable minimal hypersurfaces// Geom. Funct. Anal. — 2024. — 34. — P. 1–18.
- Chen B.-Y. Riemannian submanifolds// in: Handbook of Differential Geometry. Vol. 1 (Dillen F. J. E., Verstraelen L. C. A., eds.). — Amsterdam: North Holland, 2000. — P. 187–418.
- Cheng S. Y., Yau S.-T. Differential equations on Riemannian manifolds and their geometric applications//Commun. Pure Appl. Math. — 1975. — 28, № 3. — P. 333–354.
- Eisenhart L. P. Symmetric tensor of the second order whose first covariant derivatives are zero// Trans. Am. Math. Soc. — 1923. — 25, № 2. — P. 297–306.
- Fu H.-P., Xu G.-B., Tao Y.-Q. Some remarks on Riemannian manifolds with parallel Cotton tensor//Kodai Math. J. — 2019. — 42, № 1. — P. 64–74.
- Grigor’yan A. Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds// Bull. Am. Math. Soc. — 1999. — 36, № 2. — P. 135–249.
- Li P., Wang J. Stable minimal hypersurfaces in a non-negatively curved manifold// J. Reine Angew. Math.— 2004. — 566. — P. 215–230.
- Mikeš J., Stepanov S. What is the Bochner technique and where is it applied// Lobachevskii J. Math. —2022. — 43, № 4. — P. 709–719.
- Petersen P. Riemannian Geometry. — Cham: Springer, 2016.
- Pierzchalski A. Gradients: The ellipticity and the elliptic boundary conditions — a jigsaw puzzle// Folia Math. — 2017. — 19, № 1. — P. 65–83.
- Pigola S.,RigoliM., SettiA.G.Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique. — Basel–Boston–Berlin: Birkhäuser, 2008.
- Shandra I. G., Stepanov S. E., MikešJ.On higher-order Codazzi tensors on complete Riemannian mani-folds// Ann. Glob. Anal. Geom. — 2019. — 56. — P. 429–442.
- Simons J. Minimal varieties in Riemannian manifolds// Ann. Math. — 1968. — 88, № 1. — P. 62–105.
- Yau S.-T. Some function-theoretic properties of complete Riemannian manifold and their applications to geometry// Indiana Univ. Math. J. — 1976. — 25, № 7. — P. 659–670.
- Yau S.-T. Erratum: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry// Indiana Univ. Math. J. — 1982. — 31, № 4. — P. 607–607.
Supplementary files
